Solveeit Logo

Question

Question: The points on the curve y<sup>3</sup> + 3x<sup>2</sup> = 12y where the tangent is vertical, is (are)...

The points on the curve y3 + 3x2 = 12y where the tangent is vertical, is (are)

A

(±43,2)\left( \pm \frac{4}{\sqrt{3}}, - 2 \right)

B

(±113,1)\left( \pm \sqrt{\frac{11}{3}},1 \right)

C

(0, 0)

D

(±43,2)\left( \pm \frac{4}{\sqrt{3}},2 \right)

Answer

(±43,2)\left( \pm \frac{4}{\sqrt{3}},2 \right)

Explanation

Solution

y3 + 3x2 = 12y

dydx=6x3(4y2)\frac{dy}{dx} = \frac{6x}{3(4 - y^{2})}. For vertical tangents y = ± 2

But when y = – 2 x2 = –ve, it is not possible

for y = 2, x2 = 163\frac{16}{3}. Hence point are (±43,2)\left( \pm \frac{4}{\sqrt{3}},2 \right)