Solveeit Logo

Question

Question: The points on the curve 9y<sup>2</sup> = x<sup>3</sup> where the normal to the curve makes equal int...

The points on the curve 9y2 = x3 where the normal to the curve makes equal intercepts with the axis is

A

(4,83)\left( 4,\frac{8}{3} \right) or (4,83)\left( 4, - \frac{8}{3} \right)

B

(4,83)\left( - 4,\frac{8}{3} \right)

C

(4,83)\left( - 4, - \frac{8}{3} \right)

D

None of these

Answer

(4,83)\left( 4,\frac{8}{3} \right) or (4,83)\left( 4, - \frac{8}{3} \right)

Explanation

Solution

9y2 = x3 …..(1) Ž 18ydydx\frac{dy}{dx}= 3x2

Ž dydx=x26y\frac{dy}{dx} = \frac{x^{2}}{6y}

slope of normal = 6yx2\frac{- 6y}{x^{2}} = ±1 Ž y = ±x26\frac{\pm x^{2}}{- 6}

put in (1) 9(± x2/– 6)2= x3 Ž x = ± 4