Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

The points on the curve 9y2=x39y^2 = x^3 , where the normal to the curve makes equal intercepts with the axes are

A

(4,±83)(4,±\frac{8}{3})

B

(4,83)(4,\frac{-8}{3})

C

(4,±38)(4,±\frac{3}{8})

D

(±4,38)(±4,\frac{3}{8})

Answer

(4,±83)(4,±\frac{8}{3})

Explanation

Solution

The correct answer is A:(4±83).(4±\frac{8}{3}).
The equation of the given curve is 9y2=x3.9y^2 = x^3 .
Differentiating with respect to xx, we have:
9(2y)dydx=3x29(2y)\frac{dy}{dx}=3x^2
=dydx==x26y=\frac{dy}{dx}==\frac{x^2}{6y}
The slope of the normal to the given curve at point (x1,y1)(x_1,y_1) is
1dydx](x1,y2)=6y1x12.\frac{-1}{\frac{dy}{dx}]_(x_1,y_2)}=\frac{-6y_1}{x^2_1}.
∴ The equation of the normal to the curve at (x1,y1)(x_1,y_1) is
yy1=6y1x12(xx1)y-y_1=\frac{-6y_1}{x^2_1}(x-x_1)
x12yx12y1=6xy1+6x1y1x^2_1y-x^2_1y_1=-6xy_1+6x_1y_1
6xy16x1y1+x12y1+x12y6x1y1+x12y1\frac{6xy_1}{6x_1y_1+x_1^2y_1}+\frac{x_1^2y}{6x_1y_1+x_1^2y_1}
xx1(6+x1)6+yy1(6+x1)x1=1\frac{x}{\frac{x_1(6+x_1)}{6}}+\frac{y}{\frac{y_1(6+x_1)}{x_1}}=1
It is given that the normal makes equal intercepts with the axes. Therefore, We have:
x1(6+x1)6=y1(6+x1)x1\frac{x_1(6+x_1)}{6}=\frac{y_1(6+x_1)}{x_1}
x16=6y1....(i)\frac{x_1}{6}=6y_1 ....(i)
Also, the point (x1,y1)(x_1,y_1) lies on the curve, so we have
9y12=x13........(ii)9y^2_1=x^3_1 ........(ii)
From (i) and (ii), we have:
9(x126)2=x13x144=x13x1=49(\frac{x^2_1}{6})^2=x^3_1⇒\frac{x^4_1}{4}=x^3_1⇒x_1=4
From (ii), we have:
9y12=(4)3=649y^2_1=(4)^3=64
y12=649⇒y^2_1=\frac{64}{9}
y1=±83y_1=\frac{±8}{3}
Hence, the required points are (4±83).(4±\frac{8}{3}).
The correct answer is A.