Solveeit Logo

Question

Mathematics Question on Ellipse

The points of the ellipse 16x2+9y2=40016x^2 + 9y^2 = 400 at which the ordinate decreases at the same rate at which the abscissa increases is/are given by

A

(3,163)&(3,163)\left(3, \frac{16}{3}\right)\&\left(-3, \frac{-16}{3}\right)

B

(3,163)&(3,163)\left(3, \frac{-16}{3}\right)\&\left(-3, \frac{16}{3}\right)

C

(116,19)&(116,19)\left(\frac{1}{16}, \frac{1}{9}\right)\& \left(-\frac{1}{16}, -\frac{1}{9}\right)

D

(116,19)&(116,19)\left(\frac{1}{16}, -\frac{1}{9}\right)\& \left(-\frac{1}{16}, \frac{1}{9}\right)

Answer

(3,163)&(3,163)\left(3, \frac{16}{3}\right)\&\left(-3, \frac{-16}{3}\right)

Explanation

Solution

x225+y24009=1\frac{x^{2}}{25}+\frac{y^{2}}{\frac{400}{9}}=1
(5cosθ,203sinθ)\left(5\,cos\theta, \frac{20}{3}sin\theta\right)
x=5cosθ,y=203sinθx=5cos\theta, y=\frac{20}{3}sin\theta
dxdθ=5sinθ,dydθ=203cosθ\frac{dx}{d\theta}=-5\,sin\,\theta, \frac{dy}{d\theta}=\frac{20}{3}\,cos\,\theta
dxdθ=dydθ\frac{dx}{d\theta}=-\frac{dy}{d\theta}
5sinθ=203cosθ-5sin\theta=-\frac{20}{3}cos\,\theta
tanθ=4/3cosθ=3/5tan\theta=4/3 \Rightarrow cos\theta=3/5 or 3/5-3/5
sinθ=4/5sin\theta=4/5 or 4/5-4/5
Points are (3,163)\left(3, \frac{16}{3}\right) and (3,163)\left(-3, \frac{-16}{3}\right)