Solveeit Logo

Question

Mathematics Question on Tangents and Normals

The points of the curve y=x3+x2y = x^3 + x - 2 at which its tangents are parallel to the straight line y=4x1y = 4x - 1 are

A

( 1, 0 ), ( - 1, - 4 )

B

( 2 , 7 ) , ( - 2 , - 11 )

C

(0,2),(213,213)(0 , - 2 ) , ( 2^{\frac{1}{3}} ,2^{\frac{1}{3}})

D

(213,213),(0,4)( - 2^{\frac{1}{3}} , - 2^{\frac{1}{3}}) , (0 , - 4 )

Answer

( 1, 0 ), ( - 1, - 4 )

Explanation

Solution

Given,
y=x3+x2...(i)y=x^{3}+x-2 \,...(i)
y=4x1...(ii)y=4 x-1 \, ...(ii)
Slope of tangent to the curve (i)
dydx=3x2+1\frac{d y}{d x}=3 x^{2}+1
Slope of tangent at point (α,β)(\alpha, \beta) is
dydx(α,β)3α2+1...(iii)\left.\frac{d y}{d x}\right|_{(\alpha, \beta)}-3 \alpha^{2}+1\,...(iii)
Given, tangent of curve (i) is parallel to line (ii).
\therefore Slope of line (ii) is 4 .
\therefore From E (iii), we get
3α2+1=43 \alpha^{2}+1=4
α=±1\Rightarrow\, \alpha=\pm 1
(α,β)\therefore\, (\alpha, \beta) lie on curve (i).
β=(±1)3+(±1)2\therefore \, \beta=(\pm 1)^{3}+(\pm 1)-2
β=0,4\Rightarrow \, \beta=0,-4
\therefore Points are (1,0)(1,0) and (1,4)(-1,-4)