Solveeit Logo

Question

Question: The points of extrema of f(x) = \(\int _ { 0 } ^ { x } \frac { \sin t } { t }\) dt in the domain x ...

The points of extrema of f(x) = 0xsintt\int _ { 0 } ^ { x } \frac { \sin t } { t } dt in the domain x > 0 are –

A

(2n + 1) π2\frac { \pi } { 2 }, n = 1, 2......

B

(4n + 1) π2\frac { \pi } { 2 }, n = 1, 2......

C

(2n + 1) π4\frac { \pi } { 4 }, n = 1, 2......

D

np, n = 1, 2

Answer

np, n = 1, 2

Explanation

Solution

f '(x) = Ž f ''(x) = xcosxsinxx2\frac { x \cos x - \sin x } { x ^ { 2 } }

for maxm/minm = = 0

Ž sinx = 0 Ž x = np, n 1,2,3