Solveeit Logo

Question

Question: The points of discontinuity of \(\lim_{x \rightarrow 3^{-}}f(x) = 0\) where \(\lim_{x \rightarrow 3^...

The points of discontinuity of limx3f(x)=0\lim_{x \rightarrow 3^{-}}f(x) = 0 where limx3+f(x)limx3f(x)\lim_{x \rightarrow 3^{+}}f(x) \neq \lim_{x \rightarrow 3^{-}}f(x) is

(1) f(x)={3x,if0x153x,if1<x2f(x) = \left\{ \begin{matrix} 3x,\text{if}0 \leq x \leq 1 \\ 5 - 3x,\text{if}1 < x \leq 2 \end{matrix} \right. (2) limx1f(x)=f(1)\lim_{x \rightarrow 1}f(x) = f(1) (3)limx1f(x)=3\lim_{x \rightarrow 1}f(x) = 3 (4) None

A

f(x)={3x,if0x153x,if1<x2f(x) = \left\{ \begin{matrix} 3x,\text{if}0 \leq x \leq 1 \\ 5 - 3x,\text{if}1 < x \leq 2 \end{matrix} \right.

B

limx1f(x)=f(1)\lim_{x \rightarrow 1}f(x) = f(1)

C

limx1f(x)=3\lim_{x \rightarrow 1}f(x) = 3

D

None

Answer

f(x)={3x,if0x153x,if1<x2f(x) = \left\{ \begin{matrix} 3x,\text{if}0 \leq x \leq 1 \\ 5 - 3x,\text{if}1 < x \leq 2 \end{matrix} \right.

Explanation

Solution

The function u=f(x)=1x1u = f ( x ) = \frac { 1 } { x - 1 } is discontinuous at the point The function y=g(x)=1u2+u2=1(u+2)(u1)y = g ( x ) = \frac { 1 } { u ^ { 2 } + u - 2 } = \frac { 1 } { ( u + 2 ) ( u - 1 ) } is discontinuous at u=2u = - 2 and u=1u = 1

when u=21x1=2x=12u = - 2 \Rightarrow \frac { 1 } { x - 1 } = - 2 \Rightarrow x = \frac { 1 } { 2 } , when

u=11x1=1x=2u = 1 \Rightarrow \frac { 1 } { x - 1 } = 1 \Rightarrow x = 2

Hence, the composite y=g(f(x))y = g ( f ( x ) ) is discontinuous at three points =12,1,2= \frac { 1 } { 2 } , 1,2.