Solveeit Logo

Question

Question: The points \[O\left( {0,0} \right)\], \[A\left( {\cos \alpha ,\sin \alpha } \right)\] and \[B\left( ...

The points O(0,0)O\left( {0,0} \right), A(cosα,sinα)A\left( {\cos \alpha ,\sin \alpha } \right) and B(cosβ,sinβ)B\left( {\cos \beta ,\sin \beta } \right) are the vertices of a right-angled triangle if
A. sinαβ2=12\sin \dfrac{{\alpha - \beta }}{2} = \dfrac{1}{{\sqrt 2 }}
B. cosαβ2=12\cos \dfrac{{\alpha - \beta }}{2} = - \dfrac{1}{{\sqrt 2 }}
C. cosαβ2=12\cos \dfrac{{\alpha - \beta }}{2} = \dfrac{1}{{\sqrt 2 }}
D. sinαβ2=12\sin \dfrac{{\alpha - \beta }}{2} = - \dfrac{1}{{\sqrt 2 }}

Explanation

Solution

We will first determine the distance between the points of ABAB and ACAC using the distance formula, d=(x1x2)2+(y1y2)2d = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} and then we will determine whether the distance ABAB and ACACare same or not. If yes, then they both are not the hypotenuse of the right-angled triangle. Thus, we get that the side ABAB is perpendicular on side BCBC. Next we will let the slopes of both sides as m1{m_1} and m2{m_2} and as the sides are perpendicular so, the product of slopes will be equal to 1 - 1. Now, we will find the values of the slope and then simplify the expression to find the required relation.

Complete step by step answer:

We will first consider the given coordinates O(0,0)O\left( {0,0} \right), A(cosα,sinα)A\left( {\cos \alpha ,\sin \alpha } \right) and B(cosβ,sinβ)B\left( {\cos \beta ,\sin \beta } \right) which represent the vertices of the right-angled triangle.

Now, we will find the distance between the coordinates of AA and BB using the formula d=(x1x2)2+(y1y2)2d = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} .

d=(cosα0)2+(sinα0)2 d=cos2α+sin2α d=1 d=1  \Rightarrow d = \sqrt {{{\left( {\cos \alpha - 0} \right)}^2} + {{\left( {\sin \alpha - 0} \right)}^2}} \\\ \Rightarrow d = \sqrt {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \\\ \Rightarrow d = \sqrt 1 \\\ \Rightarrow d = 1 \\\

Next, we will find the distance between the coordinates of AA and CC using the formula d=(x1x2)2+(y1y2)2d = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}} .

d=(cosβ0)2+(sinβ0)2 d=cos2β+sin2β d=1 d=1  \Rightarrow d = \sqrt {{{\left( {\cos \beta - 0} \right)}^2} + {{\left( {\sin \beta - 0} \right)}^2}} \\\ \Rightarrow d = \sqrt {{{\cos }^2}\beta + {{\sin }^2}\beta } \\\ \Rightarrow d = \sqrt 1 \\\ \Rightarrow d = 1 \\\

As we have got the values for both the lines ABAB and ACAC equal thus, ABAB and ACAC are not the hypotenuses of the right-angled triangle. So, we obtained the side BCBC as the hypotenuse of the triangle.
Hence, the side ABAB is perpendicular to side ACAC so, we can find the slope of both the lines can be calculated using the formula m=sinxcosxm = \dfrac{{\sin x}}{{\cos x}} and put the product of the slopes given by m1×m2=1{m_1} \times {m_2} = - 1.
Thus, the slope of line ABAB is m1=sinαcosα=tanα{m_1} = \dfrac{{\sin \alpha }}{{\cos \alpha }} = \tan \alpha and slope of line ACAC is m2=sinβcosβ=tanβ{m_2} = \dfrac{{\sin \beta }}{{\cos \beta }} = \tan \beta .
Hence, we get,
m1×m2=tanα×tanβ=1\Rightarrow {m_1} \times {m_2} = \tan \alpha \times \tan \beta = - 1
We can further use the identity that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}},
Thus, we have,

sinαcosα×sinβcosβ=1 sinαsinβ=cosαcosβ sinαsinβ+cosαcosβ=0  \Rightarrow \dfrac{{\sin \alpha }}{{\cos \alpha }} \times \dfrac{{\sin \beta }}{{\cos \beta }} = - 1 \\\ \Rightarrow \sin \alpha \sin \beta = - \cos \alpha \cos \beta \\\ \Rightarrow \sin \alpha \sin \beta + \cos \alpha \cos \beta = 0 \\\

As we know that the identity cos(αβ)=cosαcosβ+sinαsinβ\cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta ,
So, we get,

cos(αβ)=0 αβ=±π2  \Rightarrow \cos \left( {\alpha - \beta } \right) = 0 \\\ \Rightarrow \alpha - \beta = \pm \dfrac{\pi }{2} \\\

Now, we will divide the obtained equation by 2 thus, we get,
αβ2=±π4\Rightarrow \dfrac{{\alpha - \beta }}{2} = \pm \dfrac{\pi }{4}
Now, we will multiply both sides by cos\cos and we have,

cos(αβ2)=±cos(π4) cos(αβ2)=±12  \Rightarrow \cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) = \pm \cos \left( {\dfrac{\pi }{4}} \right) \\\ \Rightarrow \cos \left( {\dfrac{{\alpha - \beta }}{2}} \right) = \pm \dfrac{1}{{\sqrt 2 }} \\\

Since, the value of cos(π4)=12\cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}
Hence, option B and C are correct.

Note: It is necessary to determine the side as hypotenuse for further simplification. As the other two lines are perpendicular to each other so, we have to use the property of slope that is m1m2=1{m_1}{m_2} = - 1. Remember the identity that cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1 and trigonometric values cos(π4)=12\cos \left( {\dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}. As we have obtained the slopes in terms of tan\tan so, we can simplify it and convert it into sin\sin and cos\cos terms. Remember the trigonometric identity cos(αβ)=cosαcosβ+sinαsinβ\cos \left( {\alpha - \beta } \right) = \cos \alpha \cos \beta + \sin \alpha \sin \beta . Remember the formula for slope of the line and as the lines are perpendicular, we have to use m1×m2=1{m_1} \times {m_2} = - 1. Substitution should be done properly.