Solveeit Logo

Question

Question: The points \(A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)\) and \(C\left(...

The points A(x1,y1),B(x2,y2)A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right) and C(x3,y3)C\left( {{x}_{3}},{{y}_{3}} \right) are the vertices of ΔABC\Delta ABC. The median AD meets BC at D. Find the coordinates of points Q and R on medians BE and CF, respectively such that BQ:QE=2:1BQ:QE=2:1 and CR:RF=2:1CR:RF=2:1
A. 2x1+2x2+x33,2y1+2y2+y33\dfrac{2{{x}_{1}}+2{{x}_{2}}+{{x}_{3}}}{3},\dfrac{2{{y}_{1}}+2{{y}_{2}}+{{y}_{3}}}{3}
B. x1+x2+2x33,y1+y2+2y33\dfrac{{{x}_{1}}+{{x}_{2}}+2{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+2{{y}_{3}}}{3}
C. x1+x2+x3,y1+y2+y3{{x}_{1}}+{{x}_{2}}+{{x}_{3}},{{y}_{1}}+{{y}_{2}}+{{y}_{3}}
D. x1+x2+x33,y1+y2+y33\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3}

Explanation

Solution

We first use the section ratio and concept of middle point of a line to find the coordinates of D, E, F. Then we use the formula of section ratio (mc+nam+n,md+nbm+n)\left( \dfrac{mc+na}{m+n},\dfrac{md+nb}{m+n} \right) for section ration of m:nm:n for the points (a,b),(c,d)\left( a,b \right),\left( c,d \right), to find the points Q and R. we can see the relation between those two points being similar which gives us the solution.

Complete step-by-step answer:
The points A(x1,y1),B(x2,y2)A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right) and C(x3,y3)C\left( {{x}_{3}},{{y}_{3}} \right) are the vertices of ΔABC\Delta ABC. The median AD meets BC at D.
We can assume that the median BE meets AC at E and the median CF meets AB at F.
Now we use the section formula to find the coordinates of the points E and F.

D, E, F are midpoints of the line BC, AC and AB respectively. The section ratio is 1:11:1.
The section ration of m:nm:n for the points (a,b),(c,d)\left( a,b \right),\left( c,d \right) will be (mc+nam+n,md+nbm+n)\left( \dfrac{mc+na}{m+n},\dfrac{md+nb}{m+n} \right).
So, D=(x2+x32,y2+y32)D=\left( \dfrac{{{x}_{2}}+{{x}_{3}}}{2},\dfrac{{{y}_{2}}+{{y}_{3}}}{2} \right), E=(x1+x32,y1+y32)E=\left( \dfrac{{{x}_{1}}+{{x}_{3}}}{2},\dfrac{{{y}_{1}}+{{y}_{3}}}{2} \right), F=(x1+x22,y1+y22)F=\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right).
Now points Q and R on medians BE and CF are in such a way that BQ:QE=2:1BQ:QE=2:1 and CR:RF=2:1CR:RF=2:1 which means the section ratio of BE and CF at points Q and R is 2:12:1.
We apply the same method to find the points.
First for point Q in the line of BE will be Q=(2(x1+x32)+x22+1,2(y1+y32)+y22+1)=(x1+x2+x33,y1+y2+y33)Q=\left( \dfrac{2\left( \dfrac{{{x}_{1}}+{{x}_{3}}}{2} \right)+{{x}_{2}}}{2+1},\dfrac{2\left( \dfrac{{{y}_{1}}+{{y}_{3}}}{2} \right)+{{y}_{2}}}{2+1} \right)=\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)
And for point R in the line of CF will be R=(2(x1+x22)+x32+1,2(y1+y22)+y32+1)=(x1+x2+x33,y1+y2+y33)R=\left( \dfrac{2\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2} \right)+{{x}_{3}}}{2+1},\dfrac{2\left( \dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)+{{y}_{3}}}{2+1} \right)=\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right).
So, both coordinates are similar which means both points are the same point.
The correct option is D.
So, the correct answer is “Option D”.

Note: We can’t say the relation of similarity until we have found the coordinates. The point is actually the centroid of the triangle ΔABC\Delta ABC. The centroid of a triangle always intersects its medians at the ratio of 2:12:1 from the side of its vertices. From the above coordinates of Q and R we can say that the x and y coordinates of the centroid are equal to the sum of the x and y coordinates divided by 3. For example: for points A(x1,y1),B(x2,y2)A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right) and C(x3,y3)C\left( {{x}_{3}},{{y}_{3}} \right) the centroid became x1+x2+x33,y1+y2+y33\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3}.