Solveeit Logo

Question

Mathematics Question on coordinates of a point in space

The points A(3,2,0)A(3,2,0), B(5,3,2)B(5,3,2) and C(0,2,4)C(0,2,4) are the vertices of a triangle. Find the distance of the point AA from the point in which the bisector of ??AC??AC meets [BC][BC].

A

85108\sqrt{510}

B

510\sqrt{510}

C

18510\frac{1}{8}\sqrt{510}

D

None of these

Answer

18510\frac{1}{8}\sqrt{510}

Explanation

Solution

Let DD be the points at which bisector of ??AC??AC meets [BC][BC], then DD divides [BC][BC] internally in the ratio c:bc : b where c=ABc = |AB| and b=ACb = |AC|. Now c=AB=(53)2+(32)2+(20)2=3c = \left|AB\right| = \sqrt{\left(5-3\right)^{2}+\left(3-2\right)^{2}+\left(2-0\right)^{2}} = 3 units and b=AC=(03)2+(22)2+(40)2=25=5b = \left|AC\right| = \sqrt{\left(0-3\right)^{2}+\left(2-2\right)^{2}+\left(4-0\right)^{2}}=\sqrt{25}=5 units D\therefore D divides [BC]\left[BC\right] in the ratio 3:53 : 5 Hence, D(3×0+5×53+5,3×2+5×33+5,3×4+5×23+5)D \equiv \left(\frac{3\times0+5\times 5}{3+5}, \frac{3\times2+5\times3}{3+5}, \frac{3\times4+5\times2}{3+5}\right), i.e., D(258,218,228)D \equiv \left(\frac{25}{8}, \frac{21}{8}, \frac{22}{8}\right). Now, AD=(2583)2+(2182)2+(2280)2\left|AD\right|= \sqrt{\left(\frac{25}{8}-3\right)^{2}+\left(\frac{21}{8}-2\right)^{2}+\left(\frac{22}{8}-0\right)^{2}} =164+2564+48464= \sqrt{\frac{1}{64}+\frac{25}{64}+\frac{484}{64}} =51064=18510=\sqrt{\frac{510}{64}}=\frac{1}{8}\sqrt{510}