Solveeit Logo

Question

Mathematics Question on introduction to three dimensional geometry

The points (1,3,4),(1,6,10),(7,4,7)(1,3,4),\,(-1,6,10),\,(-7,4,7) and (5,1,1)(-5,1,1)

A

form a rectangle which is not a square

B

form a rhombus which is not a square

C

form a parallelogram which is not a rhombus

D

are collinear

Answer

form a rhombus which is not a square

Explanation

Solution

Given points are A(1,3,4),B(1,6,10),C(7,4,7)A(1,3,4),B(-1,6,10),C(-7,4,7) and D(5,1,1).D(-5,1,1). AB=(11)2+(63)2+(104)2AB=\sqrt{{{(-1-1)}^{2}}+{{(6-3)}^{2}}+{{(10-4)}^{2}}}
=(2)2+(3)2+(6)2=\sqrt{{{(-2)}^{2}}+{{(3)}^{2}}+{{(6)}^{2}}}
=4+9+36=49=7=\sqrt{4+9+36}=\sqrt{49}=7 BC=(7+1)2+(46)2+(710)2BC=\sqrt{{{(-7+1)}^{2}}+{{(4-6)}^{2}}+{{(7-10)}^{2}}}
=(6)2+(2)2+(3)2=\sqrt{{{(-6)}^{2}}+{{(-2)}^{2}}+{{(-3)}^{2}}}
=36+4+9=49=7=\sqrt{36+4+9}=\sqrt{49}=7 CD=(5+7)2+(14)2+(17)2CD=\sqrt{{{(-5+7)}^{2}}+{{(1-4)}^{2}}+{{(1-7)}^{2}}}
=(2)2+(3)2+(6)2=\sqrt{{{(2)}^{2}}+{{(-3)}^{2}}+{{(-6)}^{2}}}
=4+9+36=7=\sqrt{4+9+36}=7 AD=(51)2+(13)2+(14)2AD=\sqrt{{{(-5-1)}^{2}}+{{(1-3)}^{2}}+{{(1-4)}^{2}}}
=(6)2+(2)2+(3)2=\sqrt{{{(-6)}^{2}}+{{(-2)}^{2}}+{{(-3)}^{2}}}
=36+4+9=7=\sqrt{36+4+9}=7 AC=(71)2+(43)2+(74)2AC=\sqrt{{{(-7-1)}^{2}}+{{(4-3)}^{2}}+{{(7-4)}^{2}}}
=(8)2+(1)2+(3)2=\sqrt{{{(-8)}^{2}}+{{(1)}^{2}}+{{(3)}^{2}}}
=64+1+9=74=\sqrt{64+1+9}=\sqrt{74} BD=(5+1)2+(16)2+(110)2BD=\sqrt{{{(-5+1)}^{2}}+{{(1-6)}^{2}}+{{(1-10)}^{2}}}
=(4)2+(5)2+(9)2=\sqrt{{{(-4)}^{2}}+{{(-5)}^{2}}+{{(-9)}^{2}}}
=16+25+81=112=\sqrt{16+25+81}=\sqrt{112} Since, sides AB=BC=CD=AD=7AB=BC=CD=AD=7 and diagonals, ACBDAC\ne BD So, given points form a rhombus which is not a square.