Solveeit Logo

Question

Question: The points \[(11,9),{\text{ }}(2,1)\] and \[(2, - 1)\] are the midpoints of the sides of the triangl...

The points (11,9), (2,1)(11,9),{\text{ }}(2,1) and (2,1)(2, - 1) are the midpoints of the sides of the triangle.
Then the centroid is.

(A) (5,3) (B) (5,3) (C) (3,5) (D) (5,3)  (A){\text{ }}( - 5, - 3){\text{ }}(B){\text{ }}(5, - 3) \\\ (C){\text{ }}(3,5){\text{ }}(D){\text{ }}(5,3) \\\
Explanation

Solution

Hint:- Coordinates of midpoint of a line is (x1+x22,y1+y22)\left( {\dfrac{{{x_1} + {x_2}}}{2},\dfrac{{{y_1} + {y_2}}}{2}} \right). If coordinates of
the end points of the line are (x1,y1)({x_1},{y_1}) and (x2,y2)({x_2},{y_2}).

We are given with the coordinates of midpoints of the sides of the triangle.
Let the coordinates of the vertices of the triangle be,
\RightarrowVertices of the triangle are (a,b), (c,d)(a,b),{\text{ }}(c,d) and (e,f)(e,f).
So, with the property of mid-point of the two given points.
We can write coordinates of mid-points of the sides of the triangle as,
\RightarrowMidpoint of the sides will be (a+c2,b+d2), (c+e2,d+f2)\left( {\dfrac{{a + c}}{2},\dfrac{{b + d}}{2}} \right),{\text{ }}\left( {\dfrac{{c + e}}{2},\dfrac{{d + f}}{2}} \right)and (a+e2,b+f2).\left( {\dfrac{{a + e}}{2},\dfrac{{b + f}}{2}} \right).
As, we know that coordinates of centroid of the triangle are,
\RightarrowCentroid of the triangle is (a+c+e3,b+d+f3)\left( {\dfrac{{a + c + e}}{3},\dfrac{{b + d + f}}{3}} \right)
And it can be easily seen that coordinates of the centroid of the triangle,
Can be easily obtained by adding the coordinates of the mid-points of its sides
and then dividing that by 3.
So, coordinates of centroid can be written as,
\RightarrowCentroid ((a+c2)+(c+e2)+(a+e2)3,(b+d2)+(d+f2)+(b+f2)3) \equiv \left( {\dfrac{{\left( {\dfrac{{a + c}}{2}} \right) + \left( {\dfrac{{c + e}}{2}} \right) + \left( {\dfrac{{a + e}}{2}} \right)}}{3},\dfrac{{\left( {\dfrac{{b + d}}{2}} \right) + \left( {\dfrac{{d + f}}{2}} \right) + \left( {\dfrac{{b + f}}{2}} \right)}}{3}} \right)
So, putting the values of a, b and c in the above point denoted as centroid. We get,
\RightarrowCentroid (11+2+23,9+113)(5,3) \equiv \left( {\dfrac{{11 + 2 + 2}}{3},\dfrac{{9 + 1 - 1}}{3}} \right) \equiv \left( {5,3} \right)
\RightarrowHence, the coordinates of the centroid of the triangle will be (5,3)\left( {5,3} \right)
\RightarrowHence, the correct option will be D.

Note:- Whenever we came up with this type of problem then first, we had to assume the
coordinates of vertices of triangle and then find mid-pints in terms of coordinates of
vertices. After that put coordinates of midpoints in terms of vertices of triangle in the formula
centroid triangle.