Solveeit Logo

Question

Question: The points \(1 + 3i,5 + i\) and \(3 + 2i\) in the complex plane are...

The points 1+3i,5+i1 + 3i,5 + i and 3+2i3 + 2i in the complex plane are

A

Vertices of a right angled triangle

B

Collinear

C

Vertices of an obtuse angled triangle

D

Vertices of an equilateral triangle

Answer

Collinear

Explanation

Solution

Sol. Let z1=1+3i,z2=5+iz_{1} = 1 + 3i,z_{2} = 5 + i and z3=3+2iz_{3} = 3 + 2i. Then area of triangle A=12x1y11x2y21x3y31A = \frac{1}{2}\left| \begin{matrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{matrix} \right| =12131511321=0= \frac{1}{2}\left| \begin{matrix} 1 & 3 & 1 \\ 5 & 1 & 1 \\ 3 & 2 & 1 \end{matrix} \right| = 0, Hence z1,z2z_{1},z_{2} and z3z_{3} are collinear.