Solveeit Logo

Question

Mathematics Question on Conic sections

The points (1,0),(0,1),(0,0)(1, 0), (0, 1), (0, 0) and (2k,3k),k0 (2k, 3k),k \neq 0 are concyclic if kk = _____

A

513-\frac {5}{13}

B

513\frac {5}{13}

C

15\frac {1}{5}

D

15-\frac {1}{5}

Answer

513\frac {5}{13}

Explanation

Solution

The equation of the circle which passes through the points (1,0),(0,1)(1,0),(0,1) and (0,0)(0,0) is
x2+y2xy=0x^{2}+y^{2}-x-y=0
Given that, the point (2k,3k)(2 k, 3 k) is on the circle and form concyclic circle. Then, it satisfies the E (i)
(2k)2+(3k)2(2k)(3k)=0(2 k)^{2}+(3 k)^{2}-(2 k)-(3 k)=0
4k2+9k25k=0\Rightarrow 4 k^{2}+9 k^{2}-5 k=0
13k25k=0\Rightarrow 13 k^{2}-5 k=0
k(13k5)=0\Rightarrow k(13 k-5)=0
k=0\Rightarrow k=0 or k=513k=\frac{5}{13}
Hence, k=513k=\frac{5}{13}