Solveeit Logo

Question

Mathematics Question on argand plane

The points 0,2+3i,i,22i0, 2 + 3i, i, - 2 - 2i in the argand plane are the vertices of a

A

rectangle

B

rhombus

C

trapezium

D

parallelogram

Answer

parallelogram

Explanation

Solution

Let A=0A = 0, B=2+3iB = 2 + 3i, C=iC = i, D=22iD = - 2 - 2i Now, AB=22+32=13AB=\sqrt{2^{2}+3^{2}}=\sqrt{13} BC=22+22=8BC=\sqrt{2^{2}+2^{2}}=\sqrt{8} CD=22+32=13CD=\sqrt{2^{2}+3^{2}}=\sqrt{13} DA=22+22=8DA=\sqrt{2^{2}+2^{2}}=\sqrt{8} Diagonals AC=0+12=1AC=\sqrt{0+1^{2}}=1 and BD=(4)2+(5)2=41BD=\sqrt{\left(4\right)^{2}+\left(5\right)^{2}}=\sqrt{41} which are not equal. Hence given vertices are the vertices of a parallelogram.