Solveeit Logo

Question

Question: The points \((0,\ 0),\mspace{6mu}(a,\ 0)\) and \(\left( \frac{a}{2},\frac{a\sqrt{3}}{2} \right)\) ar...

The points (0, 0),6mu(a, 0)(0,\ 0),\mspace{6mu}(a,\ 0) and (a2,a32)\left( \frac{a}{2},\frac{a\sqrt{3}}{2} \right) are vertices of.

A

Isosceles triangle

B

Equilateral triangle

C

Scalene triangle

D

None of these

Answer

Equilateral triangle

Explanation

Solution

Let A(0,0),B(a,0)A ( 0,0 ) , B ( a , 0 ) and C(a2,a32)C \left( \frac { a } { 2 } , \frac { a \sqrt { 3 } } { 2 } \right)

Hence AB=a2+0=a,BC=(a2)2+(a32)2=aA B = \sqrt { a ^ { 2 } + 0 } = a , B C = \sqrt { \left( \frac { a } { 2 } \right) ^ { 2 } + \left( \frac { a \sqrt { 3 } } { 2 } \right) ^ { 2 } } = a

And AC=(a2)2+(a32)2=aA C = \sqrt { \left( \frac { a } { 2 } \right) ^ { 2 } + \left( \frac { a \sqrt { 3 } } { 2 } \right) ^ { 2 } } = a

Hence the triangle is equilateral.