Solveeit Logo

Question

Question: The points \(( - a, - b),\mspace{6mu}(0,0),\mspace{6mu}(a,b)\) and \((a^{2},ab)\) are....

The points (a,b),6mu(0,0),6mu(a,b)( - a, - b),\mspace{6mu}(0,0),\mspace{6mu}(a,b) and (a2,ab)(a^{2},ab) are.

A

Collinear

B

Vertices of a rectangle

C

Vertices of a parallelogram

D

None of these

Answer

Collinear

Explanation

Solution

Here area of quadrilateral is equal to area of ABD\triangle A B D+area of BCD\triangle B C D

=ab1001a2ab1+001ab1a2ab1=0= \left| \begin{array} { r r r } - a & - b & 1 \\ 0 & 0 & 1 \\ a ^ { 2 } & a b & 1 \end{array} \right| + \left| \begin{array} { r r r } 0 & 0 & 1 \\ a & b & 1 \\ a ^ { 2 } & a b & 1 \end{array} \right| = 0

Hence the points are collinear. (vr% fcUnq lejs[kh; gSaA)