Solveeit Logo

Question

Question: The point which divides externally the line joining the points \((a + b,a - b)\) and \((a - b,a + b)...

The point which divides externally the line joining the points (a+b,ab)(a + b,a - b) and (ab,a+b)(a - b,a + b) in the ratio a:ba:b, is.

A

(a22abb2ab,a2+b2ab)\left( \frac{a^{2} - 2ab - b^{2}}{a - b},\frac{a^{2} + b^{2}}{a - b} \right)

B

(a22abb2ab,a2b2ab)\left( \frac{a^{2} - 2ab - b^{2}}{a - b},\frac{a^{2} - b^{2}}{a - b} \right)

C

(a22ab+b2ab,a2+b2ab)\left( \frac{a^{2} - 2ab + b^{2}}{a - b},\frac{a^{2} + b^{2}}{a - b} \right)

D

None of these

Answer

(a22abb2ab,a2+b2ab)\left( \frac{a^{2} - 2ab - b^{2}}{a - b},\frac{a^{2} + b^{2}}{a - b} \right)

Explanation

Solution

Here x=a(ab)b(a+b)ab=a22abb2abx = \frac { a ( a - b ) - b ( a + b ) } { a - b } = \frac { a ^ { 2 } - 2 a b - b ^ { 2 } } { a - b }

y=a(a+b)b(ab)ab=a2+b2aby = \frac { a ( a + b ) - b ( a - b ) } { a - b } = \frac { a ^ { 2 } + b ^ { 2 } } { a - b } .