Solveeit Logo

Question

Question: The point (s) on the curve \(y^{3} + 3x^{2} = 12y\) where the tangent is vertical (parallel to y-axi...

The point (s) on the curve y3+3x2=12yy^{3} + 3x^{2} = 12y where the tangent is vertical (parallel to y-axis), is are

A

[±43,2]\left\lbrack \pm \frac{4}{\sqrt{3}}, - 2 \right\rbrack

B

(±113,1)\left( \pm \frac{\sqrt{11}}{3},1 \right)

C

(0,0)(0,0)

D

(±43,2)\left( \pm \frac{4}{\sqrt{3}},2 \right)

Answer

(±43,2)\left( \pm \frac{4}{\sqrt{3}},2 \right)

Explanation

Solution

y3+3x2=12yy^{3} + 3x^{2} = 12y

3y2.dydx+6x=12.dydx3y^{2}.\frac{dy}{dx} + 6x = 12.\frac{dy}{dx}dydx(3y212)+6x=0\frac{dy}{dx}(3y^{2} - 12) + 6x = 0

dydx=6x123y2\frac{dy}{dx} = \frac{6x}{12 - 3y^{2}}dxdy=123y26x\frac{dx}{dy} = \frac{12 - 3y^{2}}{6x}

Tangent is parallel to y-axis, dxdy=0\frac{dx}{dy} = 0123y212 - 3y^{2} = 0 or y=±2.y = \pm 2. Then x=±43x = \pm \frac{4}{\sqrt{3}}, for y=2y = 2

y=2y = - 2does not satisfy the equation of the curve,

\therefore The point is (±43,2)\left( \pm \frac{4}{\sqrt{3}},2 \right)