Question
Mathematics Question on Three Dimensional Geometry
The point P is the intersection of the straight line joining the points Q(2,3,5) and R(1,−1,4) with the plane 5x−4y−z=1. If S is the foot of the perpendicular drawn from the point T(2,1,4) to QR, then the length of the line segment PS is
21
2
2
22
21
Solution
PLAN It is based on two concepts one is intersection of straight line and plane and other is the foot of perpendicular from a point to the straight line.
Description of situation (i) If the straight line \hspace30mm ax−x1=by−y1=cz−z1=λ intersects the plane Ax+ By+ Cz+ d= 0. 25
Then, (aλ+x1,bλ+y1,cλ+z1) would satisfy \hspace30mm Ax+By+Cz+d=0
(ii) If A is the foot of perpendicular from P to I.
Then, (DR's of PA) is perpendicular to DR's of I.
Equation of straight line QR, is
\hspace30mm \frac{x-2}{1-2}=\frac{y-3}{-1-3}=\frac{z-5}{4-5}
\Rightarrow\hspace30mm \frac{x-2}{-1}=\frac{y-3}{-4}=\frac{z-5}{-1}
\Rightarrow\hspace30mm \frac{x-2}{1}=\frac{y-3}{4}=\frac{z-5}{1}= \lambda \hspace10mm ...(i)
∴ P(λ+2,4λ+3,λ+5)must lie on 5x−4y−z=1
\Rightarrow \hspace30mm 5(\lambda+2)-4(4\lambda+3)-(\lambda+5)=1
\Rightarrow \hspace35mm 5\lambda+10-16\lambda-12 -\lambda-5=1
\Rightarrow \hspace 60mm -7-12 \lambda =1
∴ \hspace 80mm \lambda = \frac{-2}{3}
or P(34,31,313)
Again, we can assume S from E(i),
\hspace 40mm as\, S (\mu + 2, 4 \mu+3,\mu+5)
∴ DR′sofTS=<μ+2−2,4μ+3−1,μ+5−4>
\hspace30mm = < \mu , 4 \mu+ 2,\mu+1>
and DR's of QR = < 1,4,1 >
Since, perpendicular
∴ \hspace 10mm 1(\mu) +4( 4 \mu+ 2) + 1 (\mu+1)=0
⇒μ=−21 and S(23,1,29)
∴LengthofPS=(23−34)2+(1−31)2+(29−313)2=21