Solveeit Logo

Question

Question: The point on the *x*-axis whose perpendicular distance from the line \(\frac{x}{a} + \frac{y}{b} = 1...

The point on the x-axis whose perpendicular distance from the line xa+yb=1\frac{x}{a} + \frac{y}{b} = 1 is a, is

A

[ab(b±a2+b2),0]\left\lbrack \frac{a}{b}(b \pm \sqrt{a^{2} + b^{2}}),0 \right\rbrack

B

[ba(b±a2+b2),0]\left\lbrack \frac{b}{a}(b \pm \sqrt{a^{2} + b^{2}}),0 \right\rbrack

C

[ab(a±a2+b2),0]\left\lbrack \frac{a}{b}(a \pm \sqrt{a^{2} + b^{2}}),0 \right\rbrack

D

None of these

Answer

[ab(b±a2+b2),0]\left\lbrack \frac{a}{b}(b \pm \sqrt{a^{2} + b^{2}}),0 \right\rbrack

Explanation

Solution

Let the point be (h,0)(h,0) then a=±bh+0aba2+b2a = \pm \frac{bh + 0 - ab}{\sqrt{a^{2} + b^{2}}}

bh=±aa2+b2+abbh = \pm a\sqrt{a^{2} + b^{2}} + abh=ab(b±a2+b2)h = \frac{a}{b}(b \pm \sqrt{a^{2} + b^{2}})

Hence the point is [ab(b±a2+b2),0]\left\lbrack \frac{a}{b}(b \pm \sqrt{a^{2} + b^{2}}),0 \right\rbrack