Solveeit Logo

Question

Mathematics Question on introduction to three dimensional geometry

The point on the x-axis equidistant from the points (4,3,1)(4,3,1) and (2,6,2)(-2,\,-6,\,-2) is

A

(0,1,0)(0,\,-1,0)

B

(0,1,6)(0,\,1,-6)

C

(32,0,0)\left( -\frac{3}{2},0,0 \right)

D

(12,0,0)\left( -\frac{1}{2},0,0 \right)

Answer

(32,0,0)\left( -\frac{3}{2},0,0 \right)

Explanation

Solution

Let the point on x-axis is (x,0,0)(x,0,0)
According to the question,
(x4)2+(03)2+(01)2\sqrt{{{(x-4)}^{2}}+{{(0-3)}^{2}}+{{(0-1)}^{2}}}
=(x+2)2+(0+6)2+(0+2)2=\sqrt{{{(x+2)}^{2}}+{{(0+6)}^{2}}+{{(0+2)}^{2}}}
\Rightarrow x2+168x+9+1=x2+4+4x+36+4{{x}^{2}}+16-8x+9+1={{x}^{2}}+4+4x+36+4
\Rightarrow 12x=2644=1812x=26-44=-18
\Rightarrow x=1812=32x=\frac{-18}{12}=\frac{-3}{2}
Hence, required point is (32,0,0)\left( \frac{-3}{2},0,0 \right) .