Solveeit Logo

Question

Question: The point on the curve y = x<sup>2</sup> – 3x + 2 where tangent is perpendicular to y = x is -...

The point on the curve y = x2 – 3x + 2 where tangent is perpendicular to y = x is -

A

(0, 2)

B

(1, 0)

C

(–1, 6)

D

(2, – 2)

Answer

(1, 0)

Explanation

Solution

Let point is (x1, y1) \ y1 = x12x_{1}^{2} – 3x1 + 2 ......(i)

Now y = x2 – 3x + 2

dydx\frac{dy}{dx} = 2x – 3 Ž (dydx)(x1,y1)\left( \frac{\mathbf{dy}}{\mathbf{dx}} \right)_{\mathbf{(}\mathbf{x}_{\mathbf{1}}\mathbf{,}\mathbf{y}_{\mathbf{1}}\mathbf{)}} = 2x1 – 3 ......(ii)

Q Tangent is ^ to y = x & slope of this line is 1

\ slope of tangent will be – 1

\ 2x1 – 3 = – 1 Ž 2x1 = 2 Žx1 = 1

& from (i), y1 = 1 – 3 + 2 = 0

\ (x1, y1) = (1, 0)