Solveeit Logo

Question

Mathematics Question on Application of derivatives

The point on the curve y2=xy^2 = x where the tangent makes an angle of π/4\pi /4 with X-axis is

A

(12,14)\left( \frac{1}{2},\frac{1}{4} \right)

B

(14,12)\left( \frac{1}{4},\frac{1}{2} \right)

C

(4,2)(4,2)

D

(1,1)(1,1)

Answer

(14,12)\left( \frac{1}{4},\frac{1}{2} \right)

Explanation

Solution

We have, y2=x(i)y^{2}=x\,\,\,\,\,\dots(i)
2ydydx=1\therefore 2 y \frac{d y}{d x}=1
dydx=12y\Rightarrow \frac{dy}{dx}=\frac{1}{2 y}
\therefore Slope of tangent =12y(ii)=\frac{1}{2 y}\,\,\,\,\,\,\dots(ii)
Now, tangent makes an angle of π/4\pi / 4 with XX -axis
\therefore Slope of tangent =tanπ4=1(iii)=\tan \frac{\pi}{4}=1\,\,\,\,\,\dots(iii)
From Eqs. (ii) and (iii), we get
12y=1\frac{1}{2 y}=1
y=12\Rightarrow y=\frac{1}{2}
Putting, y=12y=\frac{1}{2} in E (i), we get
(12)2=x\left(\frac{1}{2}\right)^{2} =x
x=14\Rightarrow \, x=\frac{1}{4}
\therefore Required point is (14,12)\left(\frac{1}{4}, \frac{1}{2}\right)