Question
Mathematics Question on Applications of Derivatives
The point on the curve x2=2y which is nearest to the point(0,5)is
(22,4)
(22,0)
(0,0)
(2,2)
(22,4)
Solution
The given curve is x2=2y.
For each value of x,the position of the point will be(x,2x2).
The distance d(x)between the points(x,2x2).and(0,5)is given by,
d(x)=(x−0)2+(2x2−5)2=x2+4x4+25−5x2=4x4−4x2+25
∴d'(x)$$=\frac{(x^{3}-8x)}{2\sqrt{\frac{x^{4}}{4}-4x^{2}+25}}$$=\frac{(x^{3}-8x)}{\sqrt{x^{4}-16x^{2}+100}}
Now,d′(x)=0⇒x3−8x=0
⇒x(x2−8)=0
⇒x=0,±22
And,d''(x)=$$\frac{\sqrt{x^{4}-16x^{2}+100}(3x^{2}-8)-(x^{3}-8x).\frac{4x3-32x}{2\sqrt{x^{4}-16x^{2}+100}}}{(x^{4}-16x^{2}+100)}
=(x4−16x2+100)23(x4−16x2+100)(3x2−8)−2(x3−8x)(x3−8x)
=(x4−16x2+100)23(x4−16x2+100)(3x2−8)−2(x3−8x2)2
When,x=0,thend′′(x)=6336(−8)<0.
When,x=±22,d′′(x)>0.
By second derivative test,d(x) is the minimum at x=±22.
Whenx=±22,y=2(22)2=4.
Hence,the point on the curve x2=2y which is nearest to the point(0,5)is(±22,4).
The correct answer is A