Solveeit Logo

Question

Question: The point on a circle nearest to the point P(2, 1) is 4 units and the farthest point is (6, 5). Then...

The point on a circle nearest to the point P(2, 1) is 4 units and the farthest point is (6, 5). Then the equation of the circle is –

A

(x – 6) (x –2\sqrt { 2 }– 1) + (y – 5) (y –2\sqrt { 2 }– 1) = 0

B

(x – 6) (x –2\sqrt { 2 }) + (y – 5) (y –2\sqrt { 2 }) = 0

C

(x – 6) (x – 2 –22\sqrt { 2 }) + (y – 5) (y – 1 – 22\sqrt { 2 }) = 0

D

(x – 6) (x – 2 –22\sqrt { 2 }) + (y – 5) (y – 2 – 22\sqrt { 2 }) = 0

Answer

(x – 6) (x – 2 –22\sqrt { 2 }) + (y – 5) (y – 1 – 22\sqrt { 2 }) = 0

Explanation

Solution

We have

PB = (62)2+(51)2\sqrt { ( 6 - 2 ) ^ { 2 } + ( 5 - 1 ) ^ { 2 } } = 424 \sqrt { 2 }

and PA = 4 (given)

Thus, AB = PB – PA = 4(2\sqrt { 2 }– 1)

Thus, 211\frac { \sqrt { 2 } - 1 } { 1 }

Hence, h = 6+2(21)1+(21)\frac { 6 + 2 ( \sqrt { 2 } - 1 ) } { 1 + ( \sqrt { 2 } - 1 ) } = 2\sqrt { 2 }

and k = 5+(21)1+(21)\frac { 5 + ( \sqrt { 2 } - 1 ) } { 1 + ( \sqrt { 2 } - 1 ) } = 2+42\frac { \sqrt { 2 } + 4 } { \sqrt { 2 } } = 1 + 22\sqrt { 2 }

The required circle has AB as its diameter.

Hence, its equation is

(x – 6) (x – 2 – 22\sqrt { 2 }) + (y – 5) (y – 1 – 22\sqrt { 2 }) = 0.