Solveeit Logo

Question

Question: The point of intersection of the lines represented by equation \[2{{\left( x+2 \right)}^{2}}+3\left(...

The point of intersection of the lines represented by equation 2(x+2)2+3(x+2)(y2)2(y2)2=02{{\left( x+2 \right)}^{2}}+3\left( x+2 \right)\left( y-2 \right)-2{{\left( y-2 \right)}^{2}}=0 is:
(a) (2,2)\left( 2,2 \right)
(b) (2,2)\left( -2,-2 \right)
(c) (2,2)\left( -2,2 \right)
(d) (2,2)\left( 2,-2 \right)

Explanation

Solution

Hint : For any given pair of straight lines represented by the equation ax2+by2+2hxy+2gx+2fy+c=0a{{x}^{2}}+b{{y}^{2}}+2hxy+2gx+2fy+c=0. The formula for point of intersection for these pair of straight lines is given as: (x1,y1)=(f2bch2ab,g2ach2ab)\left( {{x}_{1}},{{y}_{1}} \right)=\left( \sqrt{\dfrac{{{f}^{2}}-bc}{{{h}^{2}}-ab}},\sqrt{\dfrac{{{g}^{2}}-ac}{{{h}^{2}}-ab}} \right).

Complete step by step solution :
The given equation of pair of lines is,
2(x+2)2+3(x+2)(y2)2(y2)2=02{{\left( x+2 \right)}^{2}}+3\left( x+2 \right)\left( y-2 \right)-2{{\left( y-2 \right)}^{2}}=0
By expanding the whole square and solving it further, we will have:
2(x2+4+4x)+3(xy2x+2y4)2(y2+44y)=0\Rightarrow 2\left( {{x}^{2}}+4+4x \right)+3\left( xy-2x+2y-4 \right)-2\left( {{y}^{2}}+4-4y \right)=0
Opening the bracket, we get
2x2+8+8x+3xy6x+6y122y288y=0\Rightarrow 2{{x}^{2}}+8+8x+3xy-6x+6y-12-2{{y}^{2}}-8-8y=0
Combining the like terms, we have
2x22y2+2x+3xy+14y12=0\Rightarrow 2{{x}^{2}}-2{{y}^{2}}+2x+3xy+14y-12=0.
So, the above equation represents a pair of straight lines now.
Now we know, for any given pair of straight lines represented by the equation ax2+by2+2hxy+2gx+2fy+c=0a{{x}^{2}}+b{{y}^{2}}+2hxy+2gx+2fy+c=0:
The formula for point of intersection for these pair of straight lines is given as:
(x1,y1)=(f2bch2ab,g2ach2ab)\left( {{x}_{1}},{{y}_{1}} \right)=\left( \sqrt{\dfrac{{{f}^{2}}-bc}{{{h}^{2}}-ab}},\sqrt{\dfrac{{{g}^{2}}-ac}{{{h}^{2}}-ab}} \right)
From the obtained equation, 2x22y2+2x+3xy+14y12=02{{x}^{2}}-2{{y}^{2}}+2x+3xy+14y-12=0, comparing it with the general form of equation ax2+by2+2hxy+2gx+2fy+c=0a{{x}^{2}}+b{{y}^{2}}+2hxy+2gx+2fy+c=0, we get
a=2,b=2,h=32,g=1,f=7,c=12a=2,b=-2,h=\dfrac{3}{2},g=1,f=7,c=-12.
Substituting the above determined values in the point of intersection of pair of straight lines formula, we have:

& =\left( \sqrt{\dfrac{{{(7)}^{2}}-(-2)(-12)}{{{\left( \dfrac{3}{2} \right)}^{2}}-(2)(-2)}},\sqrt{\dfrac{{{(1)}^{2}}-(2)(-12)}{{{\left( \dfrac{3}{2} \right)}^{2}}-(2)(-2)}} \right) \\\ & \Rightarrow =\left( \sqrt{\dfrac{49-24}{\dfrac{9}{4}+4}},\sqrt{\dfrac{1+24}{\dfrac{9}{4}+4}} \right) \\\ \end{aligned}$$ Taking the LCM in the denominator, we get $$\Rightarrow =\left( \sqrt{\dfrac{25}{\dfrac{9+16}{4}}},\sqrt{\dfrac{25}{\dfrac{9+16}{4}}} \right)$$ $$\Rightarrow =\left( \sqrt{\dfrac{25(4)}{25}},\sqrt{\dfrac{25(4)}{25}} \right)$$ Cancelling the like terms and clearing the square roots in the above equation to finally have: $$=\left( 2,2 \right)$$ Therefore, the point of intersection of $$2{{\left( x+2 \right)}^{2}}+3\left( x+2 \right)\left( y-2 \right)-2{{\left( y-2 \right)}^{2}}=0$$ is equal to $$=\left( 2,2 \right)$$. Hence, option (a) is the correct answer. **Note** : Expand the equation carefully and compare the coefficients of ‘g’ and ‘f’ attentively or else you may end up with a different answer. Alternatively, you can find out the two lines that are represented by these pair of straight lines and compute the intersection point, but that would be a lengthy process.