Solveeit Logo

Question

Question: The point of intersection of the lines <img src="https://cdn.pureessence.tech/canvas_631.png?top_lef...

The point of intersection of the lines x+336=y32=z64\frac { x + 3 } { - 36 } = \frac { y - 3 } { 2 } = \frac { z - 6 } { 4 } is

A
B

(2,10,4)( 2,10,4 )

C

(3,3,6)( - 3,3,6 )

D

(5,7,2)( 5,7 , - 2 )

Answer
Explanation

Solution

Given lines are, x53=y71=z+21=r1\frac { x - 5 } { 3 } = \frac { y - 7 } { - 1 } = \frac { z + 2 } { 1 } = r _ { 1 }, (say)

and x+336=y32=z64=r2\frac { x + 3 } { - 36 } = \frac { y - 3 } { 2 } = \frac { z - 6 } { 4 } = r _ { 2 } , (say)

\therefore x=3r1+5=36r23x = 3 r _ { 1 } + 5 = - 36 r _ { 2 } - 3, y=r1+7=3+2r2y = - r _ { 1 } + 7 = 3 + 2 r _ { 2 } and

z=r12=4r2+6z = r _ { 1 } - 2 = 4 r _ { 2 } + 6

On solving, we get x=21,y=53,z=103x = 21 , y = \frac { 5 } { 3 } , z = \frac { 10 } { 3 } .

Trick: Check through options.