Solveeit Logo

Question

Mathematics Question on Vectors

The point of intersection of the lines x53=y71=z+21\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}; x+336=y32=z64\frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4} is

A

(2,10,4)\left(2, 10, 4\right)

B

(21,53,103)\left(21, \frac{5}{3}, \frac{10}{3}\right)

C

(5,7,2)\left(5, 7, -2\right)

D

(3,3,6)\left(-3, 3, 6\right)

Answer

(21,53,103)\left(21, \frac{5}{3}, \frac{10}{3}\right)

Explanation

Solution

The given equation of lines are x53=y71=z+21=k(say)(1)\frac{x-5}{3}=\frac{y-7}{-1}=\frac{z+2}{1}=k\,\text{(say)}\,\quad \ldots (1) and x+336=y32=z64(2)\frac{x+3}{-36}=\frac{y-3}{2}=\frac{z-6}{4}\quad\ldots\left(2\right) \therefore Any point on line (1)(1) is (3k+5,7k,k2)(3k + 5,7 - k, k - 2). It should lie on line (2)(2) 3k+5+336=7k32=k264\therefore \frac{3k+5+3}{-36}=\frac{7-k-3}{2}=\frac{k-2-6}{4} On solving, we get k=163k=\frac{16}{3} \therefore Coordinates of intersection point are (21,53,103)\left(21, \frac{5}{3}, \frac{10}{3}\right).