Solveeit Logo

Question

Question: The point of intersection of the line \(\frac{x}{1} = \frac{y - 1}{2} = \frac{z + 2}{3}\) and the pl...

The point of intersection of the line x1=y12=z+23\frac{x}{1} = \frac{y - 1}{2} = \frac{z + 2}{3} and the plane 2x+3y+z=02x + 3y + z = 0is

A

(0, 1, –2)

B

(1, 2, 3)

C

(–1, 9, –25)

D

(111,9112511)\left( \frac{- 1}{11},\frac{9}{11}\frac{- 25}{11} \right)

Answer

(111,9112511)\left( \frac{- 1}{11},\frac{9}{11}\frac{- 25}{11} \right)

Explanation

Solution

x1=y12=z+23=r\frac { x } { 1 } = \frac { y - 1 } { 2 } = \frac { z + 2 } { 3 } = r, (say)

So, x=rx = r, y=2r+1y = 2 r + 1, z=3r2z = 3 r - 2

2r+3(2r+1)+(3r2)=0r=111\therefore 2 r + 3 ( 2 r + 1 ) + ( 3 r - 2 ) = 0 \Rightarrow r = \frac { - 1 } { 11 }

Hence, x=111,y=911,z=2511x = \frac { - 1 } { 11 } , y = \frac { 9 } { 11 } , z = - \frac { 25 } { 11 }.