Solveeit Logo

Question

Mathematics Question on Plane

The point of intersection of the line x13=y+24=z32\frac{x-1}{3}=\frac{y+2}{4}=\frac{z-3}{-2} and plane 2xy+3z1=02 x-y+3 z-1= 0 is.

A

(10, -10, 3)

B

(10, 10, -3)

C

(-10, 10, 3)

D

none of these

Answer

(10, 10, -3)

Explanation

Solution

We have line, x13=y+24=z32=λ\frac{x-1}{3}=\frac{y+2}{4}=\frac{z-3}{-2}=\lambda ...(1)
General point PP on the line is,
P=(3λ+1,4λ2,2λ+3)P =(3 \lambda+1,4 \lambda-2,-2 \lambda+3)
since line (1) intersect plane 2xy+3z1=02 x-y+3 z-1=0,
Assume it intersects at a point PP
Therefore,
2(3λ+1)(4λ2)+3(2λ+3)1=02(3 \lambda+1)-(4 \lambda-2)+3(-2 \lambda+3)-1=0
6λ+24λ+26λ+91=06 \lambda+2-4 \lambda+2-6 \lambda+9-1=0
4λ=124 \lambda=12
λ=3\lambda=3
Therefore,
P=(10,10,3))P =(10,10,-3))