Solveeit Logo

Question

Question: The point of intersection of the curves arg (z – 3i) = 3p/4 and arg(2z + 1 – 2i) = p/4 is –...

The point of intersection of the curves arg (z – 3i) = 3p/4 and arg(2z + 1 – 2i) = p/4 is –

A

14\frac{1}{4} (3 + 9i)

B

14\frac{1}{4} (9 + 3i)

C

1 + I

D

None of these

Answer

None of these

Explanation

Solution

Sol. arg (z – 3i) = arg (x + (y – 3) i) = 3p/4

Ž x < 0, y – 3 > 0, y3x\frac{y - 3}{x} = tan 3π4\frac{3\pi}{4}= – 1

Ž x + y – 3 = 0, x < 0, y > 3. …(1)

arg (2z + 1 – 2i) = arg {(2x + 1) + i(2y – 2)} = p/4

Ž x > –1/2, y > 1 and 2(y1)2x+1\frac{2(y–1)}{2x + 1} = tanπ4\frac{\pi}{4}= 1

Ž 2x – 2y + 3 = 0, x > –1/2, y > 1 …(2)

Hence, (1) and (2) have no point of intersection.