Solveeit Logo

Question

Question: The point of intersection of tangents drawn to the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^...

The point of intersection of tangents drawn to the hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 at the points where it is intersected by the line lx+my+n=0lx + my + n = 0 is

A

(a2ln,b2mn)\left( \frac{- a^{2}l}{n},\frac{b^{2}m}{n} \right)

B

(a2ln,b2mn)\left( \frac{a^{2}l}{n},\frac{- b^{2}m}{n} \right)

C

(a2nl,b2nm)\left( - \frac{a^{2}n}{l},\frac{b^{2}n}{m} \right)

D

(a2nl,b2nm)\left( \frac{a^{2}n}{l},\frac{- b^{2}n}{m} \right)

Answer

(a2ln,b2mn)\left( \frac{- a^{2}l}{n},\frac{b^{2}m}{n} \right)

Explanation

Solution

Let (x1,y1)(x_{1},y_{1}) be the required point. Then the equation of the chord of contact of tangents drawn from (x1,y1)(x_{1},y_{1}) to the given hyperbola is xx1a2yy1b2=1\frac{xx_{1}}{a^{2}} - \frac{yy_{1}}{b^{2}} = 1 ......(i)

The given line is lx+my+n=0lx + my + n = 0 .....(ii)

Equation (i) and (ii) represent the same line

\therefore x1a2l=y1b2m=1h\frac{x_{1}}{a^{2}l} = - \frac{y_{1}}{b^{2}m} = \frac{1}{- h}x1=a2ln,y1=b2mnx_{1} = \frac{- a^{2}l}{n},y_{1} = \frac{b^{2}m}{n}; Hence the required point is (a2ln,b2mn)\left( - \frac{a^{2}l}{n},\frac{b^{2}m}{n} \right)