Solveeit Logo

Question

Question: The point of intersection of tangents at two points on the ellipse \[\dfrac{{{x^2}}}{{{a^2}}}\, + \d...

The point of intersection of tangents at two points on the ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}}\, + \dfrac{{{y^2}}}{{{b^2}}} = 1, whose eccentric angles differ by right angle lies on the ellipse, is
A) x2a2+y2b2=4\dfrac{{{x^2}}}{{{a^2}}}\, + \dfrac{{{y^2}}}{{{b^2}}} = 4
B) x2a2+y2b2=3\dfrac{{{x^2}}}{{{a^2}}}\, + \dfrac{{{y^2}}}{{{b^2}}} = 3
C) x2a2+y2b2=2\dfrac{{{x^2}}}{{{a^2}}}\, + \dfrac{{{y^2}}}{{{b^2}}} = 2
D) None of these

Explanation

Solution

An ellipse is a plane curve surrounding two focal points. For all those points, the sum of the two distances to the focal points is a constant. For two points in general, on ellipse x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}}\, + \dfrac{{{y^2}}}{{{b^2}}} = 1 with eccentric angles β\beta and γ\gamma . The coordinates of point of intersection is (acosβ+γ2cosβγ2,bsinβ+γ2cosβγ2)\left( {a\dfrac{{\cos \dfrac{{\beta + \gamma }}{2}}}{{\cos \dfrac{{\beta - \gamma }}{2}}},b\dfrac{{\sin \dfrac{{\beta + \gamma }}{2}}}{{\cos \dfrac{{\beta - \gamma }}{2}}}} \right).

Complete step-by-step solution:
Let the first point on ellipse be A whose coordinates are given by (acosθ,bsinθ)\left( {a\,\cos \theta ,b\sin \theta } \right)
Now the second on ellipse, whose parametric angle differs by π2\dfrac{\pi }{2} from A be B. so the coordinates of B are (acosθ(θ+π2),bsin(θ+π2))(asinθ,bcosθ)\left( {a\,\cos \theta \left( {\theta + \dfrac{\pi }{2}} \right),b\sin \left( {\theta + \dfrac{\pi }{2}} \right)} \right) \equiv \left( { - a\,\sin \theta ,b\,\cos \theta } \right)
Now equation of tangent at point A is given by, xcosθa+ysinθb=1\dfrac{{x\,\cos \theta }}{a} + \dfrac{{y\,\sin \theta }}{b} = 1- equation1
The equation of tangent at point B is given by, xsinθa+ycosθb=1\dfrac{{ - x\,\sin \theta }}{a} + \dfrac{{y\,\cos \theta }}{b} = 1-equation2
To find the intersection points of locus and square of equation 1 and equation 2, we get:
(xcosθa+ysinθb)2+(xsinθa+ycosθb)2=2{\left( {\dfrac{{x\,\cos \theta }}{a} + \dfrac{{y\,\sin \theta }}{b}} \right)^2} + {\left( {\dfrac{{ - x\sin \theta }}{a} + \dfrac{{y\,\cos \theta }}{b}} \right)^2} = 2
Further solving the equation, we get:
x2cos2θa2+y2sin2θb2+2xysinθcosθab+x2sin2θa2+y2cos2θb22xysinθcosθab=2\dfrac{{{x^2}{{\cos }^2}\theta }}{{{a^2}}} + \dfrac{{{y^2}{{\sin }^2}\theta }}{{{b^2}}} + \dfrac{{2xy\sin \theta \,\cos \theta }}{{ab}} + \dfrac{{{x^2}{{\sin }^2}\theta }}{{{a^2}}} + \dfrac{{{y^2}{{\cos }^2}\theta }}{{{b^2}}} - \dfrac{{2xy\,\sin \theta \cos \theta }}{{ab}} = 2
Third and last expressions get cancelled. Cancelling the terms, we get:
x2a2+y2b2=2\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 2
So, Option C is the right answer.

Note: In this case we already know the answer, so it is evident if we square and add the two equations, we will get the answer. However, if we wouldn’t have known the answer, or this method is not striking your mind easily, then there is another way to solve this.