Solveeit Logo

Question

Mathematics Question on Maxima and Minima

The point of inflection of the function y0x(t23t+2)dty - \int^{x}_{0} \left(t^{2} - 3t + 2 \right) dt is

A

(12,32)\left( \frac{1}{2} , \frac{3}{2}\right)

B

(32,34)\left( \frac{3}{2} , \frac{3}{4}\right)

C

(32,34)\left( - \frac{3}{2} , - \frac{3}{4}\right)

D

(12,32)\left( - \frac{1}{2} , - \frac{3}{2}\right)

Answer

(32,34)\left( \frac{3}{2} , \frac{3}{4}\right)

Explanation

Solution

Given,
y=0x(t23t+2)dt...(i)y=\int_{0}^{x}\left(t^{2}-3 t+2\right) dt\,...(i)
On differentiating w.r.t. ' x,x,, we get
dydx=x23x+2...(ii)\frac{d y}{d x}=x^{2}-3 x+2\,...(ii)
Again, on differentiating w.r.t. ' xx', we get
d2ydx2=2x3...(iii)\frac{d^{2} y}{d x^{2}}=2 x-3\,...(iii)
We know that, at point of inflection
d2ydx2=0\frac{d^{2} y}{d x^{2}}=0
\therefore From E (iii), we get
2x3=02 x-3=0
x=32\Rightarrow x=\frac{3}{2}
Now, we have to check behaviour of d2ydx2\frac{d^{2} y}{d x^{2}} at point x=32x=\frac{3}{2}
x=32x=\frac{3}{2}
Clearly, at x=32x=\frac{3}{2} sign at d2ydx2\frac{d^{2} y}{d x^{2}} changes
(32,34)\therefore\left(\frac{3}{2}, \frac{3}{4}\right) is point of inflection