Solveeit Logo

Question

Question: The point \[\left( {4,1} \right)\] undergoes the following 3 transformations successively: (i)Refl...

The point (4,1)\left( {4,1} \right) undergoes the following 3 transformations successively:
(i)Reflection about the line y=xy = x
(ii)Translations through a distance of 2 units along the positive direction of xx axis.
(iii)Rotation through an angle π4\dfrac{\pi }{4} about the origin in the anti-clockwise sense.
Then the final position of the point is given by:
A.(12,72)\left( {\dfrac{1}{{\sqrt 2 }},\dfrac{7}{{\sqrt 2 }}} \right)
B.(2,72)\left( { - \sqrt 2 ,7\sqrt 2 } \right)
C.(12,72)\left( { - \dfrac{1}{{\sqrt 2 }},\dfrac{7}{{\sqrt 2 }}} \right)
D.(2,72)\left( {\sqrt 2 ,7\sqrt 2 } \right)

Explanation

Solution

We will find the image of the given point after reflection about the line y=xy = x. We will then find the coordinates of the point after the translation of the image along the xx axis. We will use the formula for the rotation of a point about the origin to find the final position of the point.

Complete step-by-step answer:
If any point (say (a,b)\left( {a,b} \right)) is reflected about the line y=xy = x, then its image is the point (b,a)\left( {b,a} \right); that is the abscissa and the ordinate get interchanged.
So, the reflection of the point (4,1)\left( {4,1} \right) about the line x=yx = y will be the point (1,4)\left( {1,4} \right).

Now, the point is translated through a distance of 2 units along the positive direction of thexx axis.
So, the new point’s abscissa or the xx coordinate will be 2 units more than the older abscissa. We will find the new point:
(1+2,4)=(3,4)\Rightarrow \left( {1 + 2,4} \right) = \left( {3,4} \right)

The new point will be (3,4)\left( {3,4} \right).
Now, the point is rotated through an angle π4\dfrac{\pi }{4} about the origin in the anti-clockwise sense.

We will substitute 4545^\circ for θ\theta , 3 for aa and 4 for bb in the formula for rotation of a point, (acosθbsinθ,acosθ+bsinθ)\left( {a\cos \theta - b\sin \theta ,a\cos \theta + b\sin \theta } \right). Therefore we get
(acosθbsinθ,acosθ+bsinθ)=(3cos454sin45,3cos45+4sin45)\left( {a\cos \theta - b\sin \theta ,a\cos \theta + b\sin \theta } \right) = \left( {3\cos 45^\circ - 4\sin 45^\circ ,3\cos 45^\circ + 4\sin 45^\circ } \right)
Substituting the values of all trigonometric function, we get
(3cos454sin45,3cos45+4sin45)=(3242,32+42) (3cos454sin45,3cos45+4sin45)=(12,72)\begin{array}{l} \Rightarrow \left( {3\cos 45^\circ - 4\sin 45^\circ ,3\cos 45^\circ + 4\sin 45^\circ } \right) = \left( {\dfrac{3}{{\sqrt 2 }} - \dfrac{4}{{\sqrt 2 }},\dfrac{3}{{\sqrt 2 }} + \dfrac{4}{{\sqrt 2 }}} \right)\\\ \Rightarrow \left( {3\cos 45^\circ - 4\sin 45^\circ ,3\cos 45^\circ + 4\sin 45^\circ } \right) = \left( { - \dfrac{1}{{\sqrt 2 }},\dfrac{7}{{\sqrt 2 }}} \right)\end{array}
\therefore The final position of the point is (12,72)\left( { - \dfrac{1}{{\sqrt 2 }},\dfrac{7}{{\sqrt 2 }}} \right).
Option C is the correct option.

Note: If we get a case where the a point is rotated by an angle of θ\theta about the origin in the clockwise direction, we will substitute θ- \theta in the formula instead of θ\theta . We can derive this formula using vector calculus and the Pythagoras theorem.
When a point (say (a,b)\left( {a,b} \right)) is rotated by an angle θ\theta about the origin, then the coordinates of the new point are (acosθbsinθ,acosθ+bsinθ)\left( {a\cos \theta - b\sin \theta ,a\cos \theta + b\sin \theta } \right).