Solveeit Logo

Question

Question: The point \(P ( a , b )\)lies on th e straight line \(3 x + 2 y = 13\) and the point \(Q ( b , a ...

The point P(a,b)P ( a , b )lies on th e straight line 3x+2y=133 x + 2 y = 13 and the point Q(b,a)Q ( b , a ) lies on the straight line 4xy=54 x - y = 5then the equation of line PQ is.

A

xy=5x - y = 5

B

x+y=5x + y = 5

C

x+y=5x + y = - 5

D

xy=5x - y = - 5

Answer

x+y=5x + y = 5

Explanation

Solution

Point P(a,b)P ( a , b )is on 3x+2y=133 x + 2 y = 13

So, 3a+2b=133 a + 2 b = 13 .....(i)

Point Q(b,a)Q ( b , a ) is on 4xy=54 x - y = 5

So, 4ba=54 b - a = 5 .....(ii)

By solving (i) and (ii), a=3,b=2a = 3 , b = 2

P(a,b)(3,2)P ( a , b ) \rightarrow ( 3,2 )and Q(b,a)(2,3)Q ( b , a ) \rightarrow ( 2,3 )

Now, equation of PQ

yy1=y2y1x2x1(xx1)y2=3223(x3)y - y _ { 1 } = \frac { y _ { 2 } - y _ { 1 } } { x _ { 2 } - x _ { 1 } } \left( x - x _ { 1 } \right) \Rightarrow y - 2 = \frac { 3 - 2 } { 2 - 3 } ( x - 3 )

y2=(x3)x+y=5y - 2 = - ( x - 3 ) \Rightarrow x + y = 5.