Solveeit Logo

Question

Question: The point having position vectors \(2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k},\) \(3\mathbf{i} + 4\mat...

The point having position vectors 2i+3j+4k,2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}, 3i+4j+2k,3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}, 4i+2j+3k4\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} are the vertices of

A

Right angled triangle

B

Isosceles triangle

C

Equilateral triangle

D

Collinear

Answer

Equilateral triangle

Explanation

Solution

Here,OA=2i+3j+4k,\overset{\rightarrow}{OA} = 2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}, OB=3i+4j+2k\overset{\rightarrow}{OB} = 3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}

OC=4i+2j+3k\overset{\rightarrow}{OC} = 4\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}

So, AB=i+j2k,\overset{\rightarrow}{AB} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}, BC=i2j+k\overset{\rightarrow}{BC} = \mathbf{i} - 2\mathbf{j} + \mathbf{k}, CA=2ijk\overset{\rightarrow}{CA} = 2\mathbf{i} - \mathbf{j} - \mathbf{k}

Clearly AB=BC=CA=6|AB| = |BC| = |CA| = \sqrt{6}

So these points are vertices of an equilateral triangle.