Solveeit Logo

Question

Mathematics Question on Straight lines

The point at which the circles x2+y24x4y+7=0x^{2}+y^{2}-4 x-4 y+7=0 and x2+y212x10y+45=0x^{2}+y^{2}-12 x -10 y+45=0 touch each other, is

A

(135,145)\left(\frac{13}{5}, \frac{14}{5}\right)

B

(25,56)\left(\frac{2}{5}, \frac{5}{6}\right)

C

(145,135)\left(\frac{14}{5}, \frac{13}{5}\right)

D

(125,2+215)\left(\frac{12}{5}, 2+\frac{\sqrt{21}}{5}\right)

Answer

(145,135)\left(\frac{14}{5}, \frac{13}{5}\right)

Explanation

Solution

Centres and radii of given circles are C1(2,2),r1=22+227=1C_{1}(2,2), r_{1}=\sqrt{2^{2}+2^{2}}-7=1 and C2(6,5)C_{2}(6,5), r2=52+5245r_{2} =\sqrt{5^{2}+5^{2}-45} =36+2545=4=\sqrt{36+25-45}=4 Let PP be the point at which the circle touch. Using internal ratio formula, P(x,y)=(1×6+4×21+4,1×5+4×21+4)P(x, y)=\left(\frac{1 \times 6+4 \times 2}{1+4}, \frac{1 \times 5+4 \times 2}{1+4}\right) =(6+85,5+85)=(145,135)=\left(\frac{6+8}{5}, \frac{5+8}{5}\right)=\left(\frac{14}{5}, \frac{13}{5}\right)