Solveeit Logo

Question

Question: The point (a<sup>2</sup>, a + 1) lies in the angle between the line 3x – y + 1= 0 and x + 2y – 5 = ...

The point (a2, a + 1) lies in the angle between the line

3x – y + 1= 0 and x + 2y – 5 = 0 containing the origin if –

A

aĪ (– 3, 0) Ē (13,1)\left( \frac{1}{3},1 \right)

B

a Ī (– , –3) Č(13,1)\left( \frac{1}{3},1 \right)

C

a(3,13)a \in \left( - 3,\frac{1}{3} \right)

D

a(13,)a \in \left( \frac{1}{3},\infty \right)

Answer

aĪ (– 3, 0) Ē (13,1)\left( \frac{1}{3},1 \right)

Explanation

Solution

Since origin and point (a2, a + 1) lie on the same side of both the lines , so

3a2 – (a + 1) + 1 > 0, a (3a – 1) > 0 gives

a ฮ (– ฅ, 0) ศ (13,)\left( \frac{1}{3},\infty \right)

and a2 + 2(a + 1) – 5 < 0

a2 + 2a – 3 < 0  (a – 1) (a + 3) < 0  a ฮ (–3, 1)

By both the inequalities a ฮ (–3, 0) ศ(13,1)\left( \frac{1}{3},1 \right)