Solveeit Logo

Question

Question: The point (a<sup>2</sup>, a + 1) lies in the angle between the lines 3x – y + 1 = 0 and x + 2y – 5 =...

The point (a2, a + 1) lies in the angle between the lines 3x – y + 1 = 0 and x + 2y – 5 = 0 containing the origin, if-

A

aĪ (–3, 0) Č(13,1)\left( \frac { 1 } { 3 } , 1 \right)

B

a Ī (–, 3) Č(13,1)\left( \frac { 1 } { 3 } , 1 \right)

C

(3,13)\left( - 3 , \frac { 1 } { 3 } \right)

D

a Ī (13,)\left( \frac { 1 } { 3 } , \infty \right)

Answer

aĪ (–3, 0) Č(13,1)\left( \frac { 1 } { 3 } , 1 \right)

Explanation

Solution

Since origin and the point (a2, a + 1) lie on the same side of both the lines, therefore we have

3a2 – (a + 1) + 1 > 0

i.e. a(3a – 1) > 0

gives a Ī (– , 0) Č (13,)\left( \frac { 1 } { 3 } , \infty \right)

and a2 + 2(a + 1) – 5 < 0

i.e. a2 + 2a – 3 < 0

i.e. (a – 1) (a + 3) < 0

gives a Ī (–3, 1)

Intersection of the above inequalities gives

a Ī (–3, 0) Č (13,1)\left( \frac { 1 } { 3 } , 1 \right) .