Solveeit Logo

Question

Question: The point A divides the join of \( P\left( { - 5,1} \right) \) and \( Q\left( {3,5} \right) \) in th...

The point A divides the join of P(5,1)P\left( { - 5,1} \right) and Q(3,5)Q\left( {3,5} \right) in the ratio .What is the value of for which the area of the ΔABC\Delta ABC where B(1,5)B(1,5) , C(7,2)C\left( {7, - 2} \right) is 2 square units.?
A. 7,3197,\dfrac{{31}}{9}
B. 7,319- 7,\dfrac{{31}}{9}
C. 7,3197, - \dfrac{{31}}{9}
D. 7,319- 7, - \dfrac{{31}}{9}

Explanation

Solution

Hint : The coordinates of point is to be calculated using the section formula. The coordinates of point which divides the join of two points internally in the ratio m:nm:n , D(x1,y1)D\left( {{x_1},{y_1}} \right) and E(x2,y2)E\left( {{x_2},{y_2}} \right) is (mx2+nx1m+n,my2+ny1m+n)\left( {\dfrac{{m{x_2} + n{x_1}}}{{m + n}},\dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right) . Then calculate the area of the triangle using the coordinates of the points A,B and C.

Complete step-by-step answer :
Given information
Point A divides the join of points P(5,1)P\left( { - 5,1} \right) and Q(3,5)Q\left( {3,5} \right) in the ratio of k:1k:1 .

Let the coordinates of point be A(x,y)A\left( {x,y} \right) which divides the join of two points internally in the ratio is given by,
(x=mx2+nx1m+n,y=my2+ny1m+n)\Rightarrow \left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)
Here m=km = k , n=1n = 1 , x1=5{x_1} = - 5 , y1=1{y_1} = 1 , x2=3{x_2} = 3 , and y2=5{y_2} = 5 . Using it, calculate the value of coordinates of point A.
The x-coordinate of point A is given by,
x=k×3+1×(5)k+1 x=3k5k+1  x = \dfrac{{k \times 3 + 1 \times \left( { - 5} \right)}}{{k + 1}} \\\ x = \dfrac{{3k - 5}}{{k + 1}} \\\

The x-coordinate of point B is given by,
y=k×5+1×(1)k+1 y=5k+1k+1  y = \dfrac{{k \times 5 + 1 \times \left( 1 \right)}}{{k + 1}} \\\ y = \dfrac{{5k + 1}}{{k + 1}} \\\
The coordinates of point is A(3k5k+1,5k+1k+1)A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) .
The area of the triangle whose coordinates is (x1,y1),(x2,y2)\left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) and (x3,y3)\left( {{x_3},{y_3}} \right) is given by,
Ar=12x1(y2y3)+x2(y3y1)+x3(y1y2)(1)\Rightarrow {A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right| \cdots \left( 1 \right)
The coordinates of the vertices of the triangle are A(3k5k+1,5k+1k+1)A\left( {\dfrac{{3k - 5}}{{k + 1}},\dfrac{{5k + 1}}{{k + 1}}} \right) , B(1,5)B(1,5) , and C(7,2)C\left( {7, - 2} \right) .Substitute the value A,B and C in equation (1), we get
Ar=123k5k+1(5(2))+1(2(5k+1k+1))+7((5k+1k+1)5)(2)\Rightarrow {A_r} = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( {5 - \left( { - 2} \right)} \right) + 1\left( { - 2 - \left( {\dfrac{{5k + 1}}{{k + 1}}} \right)} \right) + 7\left( {\left( {\dfrac{{5k + 1}}{{k + 1}}} \right) - 5} \right)} \right| \cdots \left( 2 \right)
Substitute the value of in equation (2) and solve the equation further to obtain the value of k.

2=123k5k+1(7)+1(2(k+1)(5k+1)k+1)+7(5k+15(k+1)k+1) 2×2=21k35k+1+2k25k1k+1+35k+735k35k+1 4=21k352k25k1+35k+735k35k+1 4=14k66k+1(3) \Rightarrow 2 = \dfrac{1}{2}\left| {\dfrac{{3k - 5}}{{k + 1}}\left( 7 \right) + 1\left( {\dfrac{{ - 2\left( {k + 1} \right) - \left( {5k + 1} \right)}}{{k + 1}}} \right) + 7\left( {\dfrac{{5k + 1 - 5\left( {k + 1} \right)}}{{k + 1}}} \right)} \right| \\\ 2 \times 2 = \left| {\dfrac{{21k - 35}}{{k + 1}} + \dfrac{{ - 2k - 2 - 5k - 1}}{{k + 1}} + \dfrac{{35k + 7 - 35k - 35}}{{k + 1}}} \right| \\\ \Rightarrow 4 = \left| {\dfrac{{21k - 35 - 2k - 2 - 5k - 1 + 35k + 7 - 35k - 35}}{{k + 1}}} \right| \\\ \Rightarrow 4 = \left| {\dfrac{{14k - 66}}{{k + 1}}} \right| \cdots \left( 3 \right) \\\

Equation (3) can have 2 values of k
When modulus opens with a positive sign
4=14k66k+1\Rightarrow 4 = \dfrac{{14k - 66}}{{k + 1}}
4k+4=14k66 10k=70 k=7  \Rightarrow 4k + 4 = 14k - 66 \\\ \Rightarrow 10k = 70 \\\ \Rightarrow k = 7 \\\

When modulus opens with a negative sign
4=14k66k+1\Rightarrow 4 = - \dfrac{{14k - 66}}{{k + 1}}
4k+4=14k+66 18k=62 k=6218 k=319  \Rightarrow 4k + 4 = - 14k + 66 \\\ \Rightarrow 18k = 62 \\\ \Rightarrow k = \dfrac{{62}}{{18}} \\\ \Rightarrow k = \dfrac{{31}}{9} \\\
Hence, the two values of k are k=7,319k = 7,\dfrac{{31}}{9}

So, the correct answer is “Option A”.

Note : The important steps and formulae in the question are,
The use of section formula, when point A(x,y)A\left( {x,y} \right) divides the join of (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) in the ratio of m:nm:n internally,
(x=mx2+nx1m+n,y=my2+ny1m+n)\left( {x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}},y = \dfrac{{m{y_2} + n{y_1}}}{{m + n}}} \right)
Also when it divides externally it is given by
(x=mx2nx1mn,y=my2ny1mn)\left( {x = \dfrac{{m{x_2} - n{x_1}}}{{m - n}},y = \dfrac{{m{y_2} - n{y_1}}}{{m - n}}} \right)
The area of the triangle whose coordinates are (x1,y1),(x2,y2)\left( {{x_1},y{}_1} \right),\left( {{x_2},{y_2}} \right) and (x3,y3)\left( {{x_3},{y_3}} \right) is,
Ar=12x1(y2y3)+x2(y3y1)+x3(y1y2){A_r} = \dfrac{1}{2}\left| {{x_1}\left( {{y_2} - {y_3}} \right) + {x_2}\left( {{y_3} - {y_1}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right|