Solveeit Logo

Question

Question: The point \( (7,24) \) is on the terminal side of an angle in standard position, how do you determin...

The point (7,24)(7,24) is on the terminal side of an angle in standard position, how do you determine the exact values of the six trigonometric functions of the angle?

Explanation

Solution

Hint : In order to determine exact values of all six trigonometric function of the angle in the above question ,calculate r=x2+y2r = \sqrt {{x^2} + {y^2}} where x will be 7 and y will be 24.And then find all the trigonometric ratios considering Hypotenuse as r ,opposite as 24 and adjacent as 7.
Formula:

sinθ=OppositeHypotenuse cosθ=AdjacentHypotenuse tanθ=OppositeAdjacent cosecθ=HypotenuseOpposite secθ=HypotenuseAdjacent cotθ=AdjacentOpposite  \sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} \\\ \cos \theta = \dfrac{{Adjacent}}{{{\text{Hypotenuse}}}} \\\ \tan \theta = \dfrac{{{\text{Opposite}}}}{{Adjacent}} \\\ \cos ec\theta = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Opposite}}}} \\\ sec\theta = \dfrac{{{\text{Hypotenuse}}}}{{Adjacent}} \\\ \cot \theta = \dfrac{{Adjacent}}{{{\text{Opposite}}}} \\\

Complete step-by-step answer :
Given a point P (7,24)(7,24) which is on the terminal side of an angle in standard position.
Let x be 7 and y be 24

Calculating r using formula r=x2+y2r = \sqrt {{x^2} + {y^2}}
r=(7)2+(24)2 r=49+576 r=625 r=25   r = \sqrt {{{(7)}^2} + {{(24)}^2}} \\\ r = \sqrt {49 + 576} \\\ r = \sqrt {625} \\\ r = 25 \;
Hence , value of r is 2525
Therefore Calculating all the trigonometric ratios as

sinθ=OppositeHypotenuse=yr=2425 cosθ=AdjacentHypotenuse=xr=725 tanθ=OppositeAdjacent=yx=247 cosecθ=HypotenuseOpposite=ry=2524 secθ=HypotenuseAdjacent=rx=257 cotθ=AdjacentOpposite=xy=724   \sin \theta = \dfrac{{{\text{Opposite}}}}{{{\text{Hypotenuse}}}} = \dfrac{y}{r} = \dfrac{{24}}{{25}} \\\ \cos \theta = \dfrac{{Adjacent}}{{{\text{Hypotenuse}}}} = \dfrac{x}{r} = \dfrac{7}{{25}} \\\ \tan \theta = \dfrac{{{\text{Opposite}}}}{{Adjacent}} = \dfrac{y}{x} = \dfrac{{24}}{7} \\\ \cos ec\theta = \dfrac{{{\text{Hypotenuse}}}}{{{\text{Opposite}}}} = \dfrac{r}{y} = \dfrac{{25}}{{24}} \\\ sec\theta = \dfrac{{{\text{Hypotenuse}}}}{{Adjacent}} = \dfrac{r}{x} = \dfrac{{25}}{7} \\\ \cot \theta = \dfrac{{Adjacent}}{{{\text{Opposite}}}} = \dfrac{x}{y} = \dfrac{7}{{24}} \;

Note : 1. Periodic Function= A function f(x)f(x) is said to be a periodic function if there exists a real number T > 0 such that f(x+T)=f(x)f(x + T) = f(x) for all x.
If T is the smallest positive real number such that f(x+T)=f(x)f(x + T) = f(x) for all x, then T is called the fundamental period of f(x)f(x) .
Since sin(2nπ+θ)=sinθ\sin \,(2n\pi + \theta ) = \sin \theta for all values of θ\theta and n \in N.
2. Even Function – A function f(x)f(x) is said to be an even function ,if f(x)=f(x)f( - x) = f(x) for all x in its domain.
Odd Function – A function f(x)f(x) is said to be an even function ,if f(x)=f(x)f( - x) = - f(x) for all x in its domain.
We know that sin(θ)=sinθ.cos(θ)=cosθandtan(θ)=tanθ\sin ( - \theta ) = - \sin \theta .\cos ( - \theta ) = \cos \theta \,and\,\tan ( - \theta ) = - \tan \theta
Therefore, sinθ\sin \theta and tanθ\tan \theta and their reciprocals, cosecθ\cos ec\theta and cotθ\cot \theta are odd functions whereas cosθ\cos \theta and its reciprocal secθ\sec \theta are even functions.