Solveeit Logo

Question

Mathematics Question on circle

The point (3,4)(3, -4) lies on both the circles x2+y22x+8y+13=0x^{2}+y^{2}-2x+8y+13=0 and x2+y24x+6y+11=0x^{2}+y^{2}-4x+6y+11=0 Then, the angle between the circles is

A

6060^{\circ}

B

tan1(12)\tan ^{-1}\left(\frac{1}{2}\right)

C

tan1(35)\tan ^{-1}\left(\frac{3}{5}\right)

D

135135^{\circ}

Answer

135135^{\circ}

Explanation

Solution

Given circles are x2+y22x+8y+13=0x^{2}+y^{2}-2 x+8 y+13=0
and x2+y24x+6y+11=0x^{2}+y^{2}-4 x+6 y+11=0.
Here, C1=(1,4),C2=(2,3)C_{1}=(1,-4), C_{2}=(2,-3)
r1=1+1613=2\Rightarrow r_{1}=\sqrt{1+16-13}=2
and r2=4+911=2r_{2}=\sqrt{4+9-11}=\sqrt{2}
Now, d=C1C2=(21)2+(3+4)2=2d=C_{1} C_{2}=\sqrt{(2-1)^{2}+(-3+4)^{2}}=\sqrt{2}
cosθ=d2r12r222r1r2=2422×2×2=12\therefore \cos \theta=\frac{d^{2}-r_{1}^{2}-r_{2}^{2}}{2 r_{1} r_{2}}=\frac{2-4-2}{2 \times 2 \times \sqrt{2}}=-\frac{1}{\sqrt{2}}
θ=135\Rightarrow\theta=135^{\circ}