Solveeit Logo

Question

Question: The point (2, 3) is a limiting point of a co-axial system of circles of which \(x^{2} + y^{2} = 9\)i...

The point (2, 3) is a limiting point of a co-axial system of circles of which x2+y2=9x^{2} + y^{2} = 9is a member. The coordinates of the other limiting point is given by

A

(1813,2713)\left( \frac{18}{13},\frac{27}{13} \right)

B

(913,613)\left( \frac{9}{13},\frac{6}{13} \right)

C

(1813,2713)\left( \frac{18}{13}, - \frac{27}{13} \right)

D

(1813,913)\left( - \frac{18}{13}, - \frac{9}{13} \right)

Answer

(1813,2713)\left( \frac{18}{13},\frac{27}{13} \right)

Explanation

Solution

Equation of circle with (2, 3) as limiting point is

(x2)2+(y3)2=0(x - 2)^{2} + (y - 3)^{2} = 0 or (x2+y29)4x6y+22=0(x^{2} + y^{2} - 9) - 4x - 6y + 22 = 0

or (x2+y29)λ(2x+3y11)=0(x^{2} + y^{2} - 9) - \lambda(2x + 3y - 11) = 0 represents the family of co-axial circles.

c=(λ,3λ2),r=λ2+9λ2411λ+9c = \left( \lambda,\frac{3\lambda}{2} \right),r = \sqrt{\lambda^{2} + \frac{9\lambda^{2}}{4} - 11\lambda + 9}.

For limiting points r = 0

13λ244λ+36=0λ=1813,2\Rightarrow 13\lambda^{2} - 44\lambda + 36 = 0 \Rightarrow \lambda = \frac{18}{13},2

\therefore The limiting points are (2, 3) and [1813,32(1813)]\left\lbrack \frac{18}{13},\frac{3}{2}\left( \frac{18}{13} \right) \right\rbrack or

(1813,2713)\left( \frac{18}{13},\frac{27}{13} \right)