Solveeit Logo

Question

Chemistry Question on Thermodynamics

The plot of log 𝑘𝑓 versus 1T\frac{1}{T} for a reversible reaction, A (g) ⇌ P (g) is shown.

Pre-exponential factors for the forward and backward reactions are 1015s-1 and 1011s-1 respectively. If the value of log K for the reaction at 500 K is 6, the value of |log kb| at 250K is_________[K = equilibrium constant of the reaction, 𝑘𝑓 = rate constant of forward reaction, 𝑘𝑏 = rate constant of backward reaction]

Answer

log kb at 500 k:
log K =log(kfkb)log (\frac{k_f}{k_b}), Since K=kfkb\Rightarrow K= \frac{k_f}{k_b}
6=logkflogkb6=log\,k_f-log\,k_b
6=9logkb6=9-log\,k_b
logkb=3at500Klog\,k_b=3 \,\,at \,\,500K
log(k2k1)=EaR(1T21T1)log (\frac{k_2}{k_1})= \frac{-E_a}{R}( \frac{1}{T_2}- \frac{1}{T_1})
kb=AbeEabRTk_b=A_be^{ \frac{-E_{ab}}{RT}}
Inkb=InAbEabRTInk_b=InA_b- \frac{E_{ab}}{RT}
2.303logkb=2.303logabEab500R2.303\,log\,k_b=2.303\,log\,a_b- \frac{E_{ab}}{500R}
Ea500R=2.303(log10113)\frac{E_a}{500R}=2.303(log\,10^{11}-3)
Ea=2.303×R×500RE_a=2.303\times R\times 500R
ln(k2k1)=EaR(1t21t1)ln( \frac{k_2}{k_1})= \frac{-E_a}{R}( \frac{1}{t_2}- \frac{1}{t_1})
ln(k250kk500k)=2.303×R×500RR(1500)ln( \frac{k_{250\,k}}{k_{500\,k}})= \frac{-2.303\times R\times500R}{R}( \frac{1}{500})
logK250k3=8log\,K_{250\,k}-3=-8
logK250k=5log\,K_{250\,k} = -5
logK250k=5|log\,K_{250\,k}|=5
The correct answer is 5.