Solveeit Logo

Question

Question: The planes \(x = cy + bz,y = az + cx,z = bx + ay\)pass through one line, if...

The planes x=cy+bz,y=az+cx,z=bx+ayx = cy + bz,y = az + cx,z = bx + aypass through one line, if

A

a+b+c=0a + b + c = 0

B

a+b+c=1a + b + c = 1

C

a2+b2+c2=1a^{2} + b^{2} + c^{2} = 1

D

a2+b2+c2+2abc=1a^{2} + b^{2} + c^{2} + 2abc = 1

Answer

a2+b2+c2+2abc=1a^{2} + b^{2} + c^{2} + 2abc = 1

Explanation

Solution

The planes are concurrent, therefore

1cbc1aba1=0a2+b2+c2+2abc=1\left| \begin{array} { c c c } - 1 & c & b \\ c & - 1 & a \\ b & a & - 1 \end{array} \right| = 0 \Rightarrow a ^ { 2 } + b ^ { 2 } + c ^ { 2 } + 2 a b c = 1 .