Solveeit Logo

Question

Question: The plane \(XOZ\) divides the join of \(\left( {1, - 1,5} \right){\text{ and }}\left( {2,3,4} \right...

The plane XOZXOZ divides the join of (1,1,5) and (2,3,4)\left( {1, - 1,5} \right){\text{ and }}\left( {2,3,4} \right) in the ratio λ:1\lambda:1, then λ\lambda is ?
A. - 3 B. 13 C. 3 D. 13  {\text{A}}{\text{. - 3}} \\\ {\text{B}}{\text{. }}\dfrac{{ - 1}}{3} \\\ {\text{C}}{\text{. 3}} \\\ {\text{D}}{\text{. }}\dfrac{1}{3} \\\

Explanation

Solution

Hint: We will draw the figure and by using the figure we acknowledge the point where the plane cuts the line. Then, we will use section formula and find the value of λ\lambda and match that particular value with these options mentioned above.

Complete step-by-step answer:
Given points are (1,1,5)\left( {1, - 1,5} \right) and (2,3,4)\left( {2,3,4} \right) and a planeXOZXOZ where, XX refers to xplanex - plane, OO refers to originorigin and ZZ refers to zplanez - plane which cuts the line segment. Thus, the point is in XZXZ planeplane and cuts the line in a ratio of λ:1\lambda :1.

Using section formula i.e.
If the coordinates of the line (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) are divided in the ratio m:nm:n then desired points will be (nx1+mx2n+m,ny1+my2n+m,nz1+mz2n+m)\left( {\dfrac{{n{x_1} + m{x_2}}}{{n + m}},\dfrac{{n{y_1} + m{y_2}}}{{n + m}},\dfrac{{n{z_1} + m{z_2}}}{{n + m}}} \right).
We can say, the desired points in our case will be (2λ+1λ+1,3λ1λ+1,4λ+5λ+1)\left( {\dfrac{{2\lambda + 1}}{{\lambda + 1}},\dfrac{{3\lambda - 1}}{{\lambda + 1}},\dfrac{{4\lambda + 5}}{{\lambda + 1}}} \right)
Since, this point then lies in XOZXOZ planeplane then it’s ycoordinatey - coordinate should be zero.
 3λ1λ+1=0\therefore {\text{ }}\dfrac{{3\lambda - 1}}{{\lambda + 1}} = 0
We get
3λ1=0 3λ=1 λ=13  3\lambda - 1 = 0 \\\ \Rightarrow 3\lambda = 1 \\\ \lambda = \dfrac{1}{3} \\\
Hence, the correct option is D. 13{\text{D}}{\text{. }}\dfrac{1}{3}

Note: In the 3-D geometry we’ll use a section formula which tells us the coordinates of the points which divides a given line segment into two parts such that their lengths are in the ratio m:nm:n. Do note that section formula is very helpful in coordinate geometry and in this question. Thus, this is the only way.