Solveeit Logo

Question

Question: The plane \(x + 2y - z = 4\) cuts the sphere \(x^{2} + y^{2} + z^{2} - x + z - 2 = 0\) in a circle ...

The plane x+2yz=4x + 2y - z = 4 cuts the sphere

x2+y2+z2x+z2=0x^{2} + y^{2} + z^{2} - x + z - 2 = 0 in a circle of radius

A

2

B

2\sqrt{2}

C

3

D

1

Answer

1

Explanation

Solution

Perpendicular distance to centre (12,0,12)\left( \frac { 1 } { 2 } , 0 , - \frac { 1 } { 2 } \right) from x+2yz=4x + 2 y - z = 4is,

P=12+1246=32P = \frac { \left| \frac { 1 } { 2 } + \frac { 1 } { 2 } - 4 \right| } { \sqrt { 6 } } = \sqrt { \frac { 3 } { 2 } } and radius of sphere R=52R = \sqrt { \frac { 5 } { 2 } },

So, r=R2P2=5232=1r = \sqrt { R ^ { 2 } - P ^ { 2 } } = \sqrt { \frac { 5 } { 2 } - \frac { 3 } { 2 } } = 1.