Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

The plane r=s(i^+2j^4k^)+t(3i^+4j^4k^)\overrightarrow{r}=s(\hat{i}+2\hat{j}-4\hat{k})+t(3\hat{i}+4\hat{j}-4\hat{k}) +(1t)(2i^7j^3k^)+(1-t)(2\hat{i}-7\hat{j}-3\hat{k}) is parallel to the line

A

r=(i^+j^k^)+t(i^2j^+4k^)\overrightarrow{r}=(-\hat{i}+\hat{j}-\hat{k})+t(-\hat{i}-2\hat{j}+4\hat{k})

B

r=(i^+j^k^)+t(i^2j^+4k^)\overrightarrow{r}=(-\hat{i}+\hat{j}-\hat{k})+t(\hat{i}-2\hat{j}+4\hat{k})

C

r=(i^+j^k^)+t(i^4j^+7k^)\overrightarrow{r}=(\hat{i}+\hat{j}-\hat{k})+t(-\hat{i}-4\hat{j}+7\hat{k})

D

r=(i^+j^k^)+t(2i^+2j^+4k^)\overrightarrow{r}=(-\hat{i}+\hat{j}-\hat{k})+t(-2\hat{i}+2\hat{j}+4\hat{k})

Answer

r=(i^+j^k^)+t(i^2j^+4k^)\overrightarrow{r}=(-\hat{i}+\hat{j}-\hat{k})+t(-\hat{i}-2\hat{j}+4\hat{k})

Explanation

Solution

Given plane is
\Rightarrow r=r(i^+2j^4k^)+t(3i^+4j^4k^)\overrightarrow{r}=r(\hat{i}+2\hat{j}-4\hat{k})+t(3\hat{i}+4\hat{j}-4\hat{k}) +(1t)(2i^7j^3k^)+(1-t)(2\hat{i}-7\hat{j}-3\hat{k})
\Rightarrow r=(2i^7j^+3k^)+s(i^+2j^4k^)\overrightarrow{r}=(2\hat{i}-7\hat{j}+3\hat{k})+s(\hat{i}+2\hat{j}-4\hat{k}) +t(i^+11j^k^)+t(\hat{i}+11\hat{j}-\hat{k})
Comparing it with the equation of plane r=a+λb+μc,\overrightarrow{r}=\overrightarrow{a}+\lambda \overrightarrow{b}+\mu \overrightarrow{c}, we get b=i^+2j^4k^\overrightarrow{b}=\hat{i}+2\hat{j}-4\hat{k} and c=i^+11j^k^\overrightarrow{c}=\hat{i}+11\hat{j}-\hat{k}
Now, b×c=i^j^k^ 124 1111 \overrightarrow{b}\times \overrightarrow{c}=\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ 1 & 2 & -4 \\\ 1 & 11 & -1 \\\ \end{matrix} \right|
=42i^3j^+9k^=42\hat{i}-3\hat{j}+9\hat{k}
\therefore Parametric form of plane is r.(b×c)=a.(b×c)\overrightarrow{r}.(\overrightarrow{b}\times \overrightarrow{c})=\overrightarrow{a}.(\overrightarrow{b}\times \overrightarrow{c})
\Rightarrow r.(42i^3j^+9k^)\overrightarrow{r}.(42\hat{i}-3\hat{j}+9\hat{k})
=(2i^7j^+3k^).(42i^3j^+9k^)=(2\hat{i}-7\hat{j}+3\hat{k}).(42\hat{i}-3\hat{j}+9\hat{k})
which is of the form r.r=d\overrightarrow{r}.\overrightarrow{r}=d
\Rightarrow r=42i^3j^+9k^\overrightarrow{r}=42\hat{i}-3\hat{j}+9\hat{k}
Now, the line given in option (a) is
r=(i^+j^+k^)+t(i^2j^+4k^)\overrightarrow{r}=(-\hat{i}+\hat{j}+\hat{k})+t(-\hat{i}-2\hat{j}+4\hat{k})
Comparing it with r=p+tq,\overrightarrow{r}=\overrightarrow{p}+t\overrightarrow{q}, we get q=(i^2j^+4k^)\overrightarrow{q}=(-\hat{i}-2\hat{j}+4\hat{k}) Since, q.n=(i^2j^+4k^).(42i^3j^+9k^)\overrightarrow{q}.\overrightarrow{n}=(-\hat{i}-2\hat{j}+4\hat{k}).(42\hat{i}-3\hat{j}+9\hat{k})
=42+6+36=0=-42+6+36=0
Hence, the line given in option (a) is parallel to the given plane.