Question
Mathematics Question on Three Dimensional Geometry
The plane r=s(i^+2j^−4k^)+t(3i^+4j^−4k^) +(1−t)(2i^−7j^−3k^) is parallel to the line
r=(−i^+j^−k^)+t(−i^−2j^+4k^)
r=(−i^+j^−k^)+t(i^−2j^+4k^)
r=(i^+j^−k^)+t(−i^−4j^+7k^)
r=(−i^+j^−k^)+t(−2i^+2j^+4k^)
r=(−i^+j^−k^)+t(−i^−2j^+4k^)
Solution
Given plane is
⇒ r=r(i^+2j^−4k^)+t(3i^+4j^−4k^) +(1−t)(2i^−7j^−3k^)
⇒ r=(2i^−7j^+3k^)+s(i^+2j^−4k^) +t(i^+11j^−k^)
Comparing it with the equation of plane r=a+λb+μc, we get b=i^+2j^−4k^ and c=i^+11j^−k^
Now, b×c=i^ 1 1 j^211k^−4−1
=42i^−3j^+9k^
∴ Parametric form of plane is r.(b×c)=a.(b×c)
⇒ r.(42i^−3j^+9k^)
=(2i^−7j^+3k^).(42i^−3j^+9k^)
which is of the form r.r=d
⇒ r=42i^−3j^+9k^
Now, the line given in option (a) is
r=(−i^+j^+k^)+t(−i^−2j^+4k^)
Comparing it with r=p+tq, we get q=(−i^−2j^+4k^) Since, q.n=(−i^−2j^+4k^).(42i^−3j^+9k^)
=−42+6+36=0
Hence, the line given in option (a) is parallel to the given plane.